Skip to main content
Log in

Vortex-induced vibration of a cylinder in pulsating nanofluid flow

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this paper, vortex-induced vibration of a circular cylinder with forced convection heat transfer and entropy generation in pulsating alumina–water nanofluid flow is investigated numerically. Numerical simulation is carried out for a constant mass ratio of 2 and damping ratio of 0.01 at a fixed Reynolds number of 150. The ranges of reduced velocity, particle volume fraction and inlet velocity oscillation amplitude are 3–8, 0–5% and 0–1, respectively. It was found that the lock-in phenomenon, nanofluid concentration and inlet velocity oscillation amplitude have an effective role in increasing heat transfer and decreasing entropy generation. Two wake patterns (2S and 2P) were observed in the present simulation. For velocity oscillation amplitude of 1, the transition from 2S to 2P modes occurs in vortex shedding pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

Be:

Bejan number

C :

Heat capacity (J Kg−1 k−1)

C l :

Lift coefficient

C d :

Drag coefficient

C p :

Heat capacity at constant pressure (J Kg−1 k−1)

D :

Cylinder diameter (m)

d :

Nanoparticle diameter (m)

f :

Frequency (Hz)

h :

Heat transfer coefficient (W/m2K)

K :

Thermal conductivity (W m−1 K−1)

K b :

Boltzmann constant (J k−1)

m :

Mass (Kg)

Nu:

Nusselt number

P :

Pressure (Pa)

Pr:

Prandtl number

q″:

Heat transfer rate (W)

Rb:

Kapitza resistance (K m2 W−1)

Re:

Reynolds number

S‴:

Entropy generation rate (J Kg−1 k−1)

St:

Strouhal number

T :

Temperature (K)

t :

Time (s)

U :

Free stream velocity (m s−1)

V :

Fluid velocity (m s−1)

y :

Cylinder vertical displacement (m)

Y :

Nondimensional cylinder vertical displacement

µ :

Fluid viscosity (Pa s)

ρ :

Density (Kg m−3)

θ :

Angular position (°)

α :

Nanoparticle concentration (%)

bf:

Base fluid

cyl:

Cylinder

eff:

Effective

eq:

Equivalent

ff:

Fluid friction

gen:

Generated

ht:

Heat transfer

loc:

Local

n:

Normalized

nf:

Nanofluid

np:

Nanoparticle

r:

Reduced

References

  1. Parkinson G. Mathematical models of flow-induced vibrations of bluff bodies. Flow Induc Struct Vib. 1974;1974:81–127.

    Article  Google Scholar 

  2. Govardhan R, Williamson C. Modes of vortex formation and frequency response of a freely vibrating cylinder. J Fluid Mech. 2000;420:85–130.

    Article  CAS  Google Scholar 

  3. Carini M, Pralits J, Luchini P. Feedback control of vortex shedding using a full-order optimal compensator. J Fluids Struct. 2015;53:15–25.

    Article  Google Scholar 

  4. Ahn HT, Kallinderis Y. Strongly coupled flow/structure interactions with a geometrically conservative ALE scheme on general hybrid meshes. J Comput Phys. 2006;219(2):671–96.

    Article  Google Scholar 

  5. Cheng C-H, Hong J-L, Aung W. Numerical prediction of lock-on effect on convective heat transfer from a transversely oscillating circular cylinder. Int J Heat Mass Transf. 1997;40(8):1825–34.

    Article  CAS  Google Scholar 

  6. Borazjani I, Sotiropoulos F. Vortex-induced vibrations of two cylinders in tandem arrangement in the proximity–wake interference region. J Fluid Mech. 2009;621:321–64.

    Article  Google Scholar 

  7. Izadpanah E, Ashouri A, Liravi M, Amini Y. Effect of vortex-induced vibration of finned cylinders on heat transfer enhancement. Phys Fluids. 2019;31(7):073604.

    Article  Google Scholar 

  8. Sheikholeslami M. Magnetic field influence on CuO–H2O nanofluid convective flow in a permeable cavity considering various shapes for nanoparticles. Int J Hydrogen Energy. 2017;42(31):19611–21.

    Article  CAS  Google Scholar 

  9. Sheikholeslami M. Numerical simulation for solidification in a LHTESS by means of nano-enhanced PCM. J Taiwan Inst Chem Eng. 2018;86:25–41.

    Article  CAS  Google Scholar 

  10. Sheikholeslami M. New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media. Comput Methods Appl Mech Eng. 2019;344:319–33.

    Article  Google Scholar 

  11. Sheikholeslami M. Numerical approach for MHD Al2O3-water nanofluid transportation inside a permeable medium using innovative computer method. Comput Methods Appl Mech Eng. 2019;344:306–18.

    Article  Google Scholar 

  12. Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, Marshall JS, Siavashi M, Taylor RA, Niazmand H. Recent advances in modeling and simulation of nanofluid flows-part I: fundamental and theory, Physics reports, (2018).

  13. Saeed M, Kim M-H. Heat transfer enhancement using nanofluids (Al2O3–H2O) in mini-channel heatsinks. Int J Heat Mass Transf. 2018;120:671–82.

    Article  CAS  Google Scholar 

  14. Ebrahimi A, Rikhtegar F, Sabaghan A, Roohi E. Heat transfer and entropy generation in a microchannel with longitudinal vortex generators using nanofluids. Energy. 2016;101:190–201.

    Article  CAS  Google Scholar 

  15. Anbumeenakshi C, Thansekhar M. On the effectiveness of a nanofluid cooled microchannel heat sink under non-uniform heating condition. Appl Therm Eng. 2017;113:1437–43.

    Article  CAS  Google Scholar 

  16. Zhao Q, Xu H, Tao L. Nanofluid flow and heat transfer in a microchannel with interfacial electrokinetic effects. Int J Heat Mass Transf. 2018;124:158–67.

    Article  CAS  Google Scholar 

  17. Amini Y, Akhavan S, Izadpanah E. A numerical investigation on the heat transfer characteristics of nanofluid flow in a three-dimensional microchannel with harmonic rotating vortex generators. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08402-6.

    Article  Google Scholar 

  18. Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, Marshall JS, Taylor RA, Abu-Nada E, Rashidi S. Recent advances in modeling and simulation of nanofluid flows-part II: applications, Physics reports, (2018).

  19. Rashidi S, Akbarzadeh M, Karimi N, Masoodi R. Combined effects of nanofluid and transverse twisted-baffles on the flow structures, heat transfer and irreversibilities inside a square duct—a numerical study. Appl Therm Eng. 2018;130:135–48.

    Article  CAS  Google Scholar 

  20. Naderi B, Mohammadzadeh K. Numerical unsteady simulation of nanofluid flow over a heated angular oscillating circular cylinder. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08349-8.

    Article  Google Scholar 

  21. Mehryan SAM, Izadpanahi E, Ghalambaz M, Chamkha A. Mixed convection flow caused by an oscillating cylinder in a square cavity filled with Cu–Al2O3/water hybrid nanofluid. J Therm Anal Calorim 2019;137:965. https://doi.org/10.1007/s10973-019-08012-2.

    Article  CAS  Google Scholar 

  22. Mousavi SB, Heyhat MM. Numerical study of heat transfer enhancement from a heated circular cylinder by using nanofluid and transverse oscillation. J Therm Anal Calorim. 2019;135(2):935–45.

    Article  CAS  Google Scholar 

  23. Maskeen MM, Zeeshan A, Mehmood OU, Hassan M. Heat transfer enhancement in hydromagnetic alumina–copper/water hybrid nanofluid flow over a stretching cylinder. J Therm Anal Calorim. 1–10.

  24. Rashidi S, Kashefi MH, Kim KC, Samimi-Abianeh O. Potentials of porous materials for energy management in heat exchangers—a comprehensive review. Appl Energy. 2019;243:206–32.

    Article  Google Scholar 

  25. Rashidi S, Eskandarian M, Mahian O, Poncet S. Combination of nanofluid and inserts for heat transfer enhancement. J Therm Anal Calorim. 2019;135(1):437–60.

    Article  CAS  Google Scholar 

  26. Fowler T IV, Witherden F, Girimaji S. Pulsating flow past a square cylinder at low reynolds number: analysis of vortex structures. College Park: Bulletin of the American Physical Society; 2019.

    Google Scholar 

  27. Srivastava A, Dhiman A. Pulsatile flow and heat transfer of shear-thinning power-law fluids over a confined semi-circular cylinder. Eur Phys J Plus. 2019;134(4):144.

    Article  Google Scholar 

  28. Hadad Y, Jafarpur K. Laminar forced convection heat transfer from isothermal bodies with unity aspect ratio in coaxial air flow. Heat Transf Eng. 2012;33(3):245–54.

    Article  CAS  Google Scholar 

  29. Hadad Y, Jafarpur K. Laminar forced convection heat transfer from isothermal cylinders with active ends and different aspect ratios in axial air flows. Heat Mass Transf. 2011;47(1):59–68.

    Article  Google Scholar 

  30. Bergman TL, Incropera FP, DeWitt DP, Lavine AS. Fundamentals of heat and mass transfer. Hoboken: Wiley; 2011.

    Google Scholar 

  31. Yue Y, Mohammadian SK, Zhang Y. Analysis of performances of a manifold microchannel heat sink with nanofluids. Int J Therm Sci. 2015;89:305–13.

    Article  CAS  Google Scholar 

  32. Xuan Y, Roetzel W. Conceptions for heat transfer correlation of nanofluids. Int J Heat Mass Transf. 2000;43(19):3701–7.

    Article  CAS  Google Scholar 

  33. A. Bejan, Convection heat transfer, John wiley & sons, 2013.

  34. Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf Int J. 1998;11(2):151–70.

    Article  CAS  Google Scholar 

  35. Koo J, Kleinstreuer C. A new thermal conductivity model for nanofluids. J Nanopart Res. 2004;6(6):577–88.

    Article  Google Scholar 

  36. Hamilton R, Crosser O. Thermal conductivity of heterogeneous two-component systems. Ind Eng Chem Fundam. 1962;1(3):187–91.

    Article  CAS  Google Scholar 

  37. Li J. Computational analysis of nanofluid flow in microchannels with applications to micro-heat sinks and bio-MEMS (2008).

  38. Wang C, Tang H, Duan F, Simon C. Control of wakes and vortex-induced vibrations of a single circular cylinder using synthetic jets. J Fluids Struct. 2016;60:160–79.

    Article  Google Scholar 

  39. Churchill S, Bernstein M. A correlating equation for forced convection from gases and liquids to a circular cylinder in crossflow. J Heat Transf. 1977;99(2):300–6.

    Article  CAS  Google Scholar 

  40. Izadpanah E, Amini Y, Ashouri A. A comprehensive investigation of vortex induced vibration effects on the heat transfer from a circular cylinder. Int J Therm Sci. 2018;125:405–18.

    Article  Google Scholar 

  41. Mahir N, Altaç Z. Numerical investigation of convective heat transfer in unsteady flow past two cylinders in tandem arrangements. Int J Heat Fluid Flow. 2008;29(5):1309–18.

    Article  CAS  Google Scholar 

  42. Liu C, Zheng X, Sung C. Preconditioned multigrid methods for unsteady incompressible flows. J Comput Phys. 1998;139(1):35–57.

    Article  Google Scholar 

  43. Williamson C. 2-D and 3-D aspects of the wake of a cylinder, and their relation to wake computations. Lect Appl Math Am Math Soc. 1991;28:719.

    Google Scholar 

  44. Norberg C. Fluctuating lift on a circular cylinder: review and new measurements. J Fluids Struct. 2003;17(1):57–96.

    Article  Google Scholar 

  45. Tritton DJ. Experiments on the flow past a circular cylinder at low Reynolds numbers. J Fluid Mech. 1959;6(4):547–67.

    Article  Google Scholar 

  46. Sarpkaya T. Hydrodynamic damping, flow-induced oscillations, and biharmonic response. J Offshore Mech Arct Eng. 1995;117(4):232–8.

    Article  Google Scholar 

  47. Andraka C, Diller T. Heat-transfer distribution around a cylinder in pulsating crossflow. J Eng Gas Turbines Power. 1985;107(4):976–82.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Amini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amini, Y., Akhavan, S. & Izadpanah, E. Vortex-induced vibration of a cylinder in pulsating nanofluid flow. J Therm Anal Calorim 140, 2143–2158 (2020). https://doi.org/10.1007/s10973-019-08980-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08980-5

Keywords

Navigation