Second law analysis of a porous structured enclosure with nano-enhanced phase change material and under magnetic force


The investigations show that an undeniable part of future smart energy system, which is to be based on 100% clean energies, is energy storage units. Indeed, due to the intermittent inherent of the main source of renewable energies, e.g., wind and solar, energy storage systems will be highly in service in the future. In this regard, investigation of the impacts of combining nanopowders on the thermal behavior of PCM through a thermal energy storage bed in various operational conditions has been an interesting topic of study in the literature. The current article presents entropy generation assessment of a heat storage unit with a water-based nanoparticle-enhanced PCM under the impact of Lorentz forces. In this system, the nanoparticles are dispersed in the pure phase change material (water) to augment the conductive rate, speeding up the solidification (i.e., the discharging) process. For this, the governing equations are derived with impose of Darcy’s law for the permeable media and homogeneous model for the CuO–water nanomaterial features. The numerical solution method is Galerkin finite element method using FlexPDE software. The results of the simulations are presented for the entropy generation components (including friction, magnetic and thermal effects) and solid fraction contours for various Rayleigh numbers and flow conditions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Arabkoohsar A, Ismail KARAR, Machado L, Koury RNNNN. Energy consumption minimization in an innovative hybrid power production station by employing PV and evacuated tube collector solar thermal systems. Renew Energy. 2016;93:424–41.

    Article  Google Scholar 

  2. 2.

    Akarslan E, Hocaoglu FO, Edizkan R. Novel short term solar irradiance forecasting models. Renew Energy. 2018;123:58–66.

    Article  Google Scholar 

  3. 3.

    Arabkoohsar A, Machado L, Koury RNNNN. Operation analysis of a photovoltaic plant integrated with a compressed air energy storage system and a city gate station. Energy. 2016;98:78–91.

    Article  Google Scholar 

  4. 4.

    Arabkoohsar A, Andresen GBB. Design and analysis of the novel concept of high temperature heat and power storage. Energy. 2017;126:21–33.

    Article  Google Scholar 

  5. 5.

    Arabkoohsar A, Andresen GB. Dynamic energy, exergy and market modeling of a high temperature heat and power storage system. Energy. 2017;126:430–43.

    Article  Google Scholar 

  6. 6.

    Jaguemont J, Omar N, Van den Bossche P, Mierlo J. Phase-change materials (PCM) for automotive applications: a review. Appl Therm Eng. 2018;132:308–20.

    CAS  Article  Google Scholar 

  7. 7.

    Zalba B, Marı́n JM, Cabeza LF, Mehling H. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Therm Eng. 2003;23(3):251–83.

    CAS  Article  Google Scholar 

  8. 8.

    Shabgard H, Bergman TL, Sharifi N, Faghri A. High temperature latent heat thermal energy storage using heat pipes. Int J Heat Mass Transf. 2010;53(15):2979–88.

    CAS  Article  Google Scholar 

  9. 9.

    Jamekhorshid A, Sadrameli SM, Barzin R, Farid MM. Composite of wood-plastic and micro-encapsulated phase change material (MEPCM) used for thermal energy storage. Appl Therm Eng. 2017;112:82–8.

    CAS  Article  Google Scholar 

  10. 10.

    Yan SPJ, Shamim T, Chou SK, Li H, Zhang P, Meng Z, Zhu H, Wang Y. Clean, efficient and affordable energy for a sustainable future: the 7th international conference on applied energy (ICAE2015) experimental and numerical study of heat transfer characteristics of a paraffin/metal foam composite PCM. Energy Procedia. 2015;75:3091–7.

    Article  Google Scholar 

  11. 11.

    Eslamnezhad H, Rahimi AB. Enhance heat transfer for phase-change materials in triplex tube heat exchanger with selected arrangements of fins. Appl Therm Eng. 2017;113:813–21.

    CAS  Article  Google Scholar 

  12. 12.

    Khodadadi JM, Hosseinizadeh SF. Nanoparticle-enhanced phase change materials (NEPCM) with great potential for improved thermal energy storage. Int Commun Heat Mass Transf. 2007;34(5):534–43.

    CAS  Article  Google Scholar 

  13. 13.

    Dadvand A, Boukani NH, Dawoodian M. Numerical simulation of the melting of a NePCM due to a heated thin plate with different positions in a square enclosure. Therm Sci Eng Prog. 2018;7:248–66.

    Article  Google Scholar 

  14. 14.

    Petrovic A, Lelea D, Laza I. The comparative analysis on using the NEPCM materials and nanofluids for microchannel cooling solutions. Int Commun Heat Mass Transf. 2016;79:39–45.

    CAS  Article  Google Scholar 

  15. 15.

    Sheikholeslami M, Mahian O. Enhancement of PCM solidification using inorganic nanoparticles and an external magnetic field with application in energy storage systems. J Clean Prod. 2019;215:963–77.

    CAS  Article  Google Scholar 

  16. 16.

    Sheikholeslami M, Haq R, Shafee A, Li Z. Heat transfer behavior of nanoparticle enhanced PCM solidification through an enclosure with V shaped fins. Int J Heat Mass Transf. 2019;130:1322–42.

    CAS  Article  Google Scholar 

  17. 17.

    Sheikholeslami M, Li Z, Shafee A. Lorentz forces effect on NEPCM heat transfer during solidification in a porous energy storage system. Int J Heat Mass Transf. 2018;127:665–74.

    CAS  Article  Google Scholar 

  18. 18.

    Suresh Kumar KR, Dinesh R, Ameelia Roseline A, Kalaiselvam S. Performance analysis of heat pipe aided NEPCM heat sink for transient electronic cooling. Microelectron Reliab. 2017;73:1–13.

    CAS  Article  Google Scholar 

  19. 19.

    Hosseinizadeh SF, Darzi AAR, Tan FL. Numerical investigations of unconstrained melting of nano-enhanced phase change material (NEPCM) inside a spherical container. Int J Therm Sci. 2012;51:77–83.

    CAS  Article  Google Scholar 

  20. 20.

    Ebrahimi A, Dadvand A. Simulation of melting of a nano-enhanced phase change material (NePCM) in a square cavity with two heat source–sink pairs. Alexandria Eng J. 2015;54(4):1003–17.

    Article  Google Scholar 

  21. 21.

    Sheikholeslami M. Finite element method for PCM solidification in existence of CuO nanoparticles. J Mol Liq. 2018;265:347–55.

    CAS  Article  Google Scholar 

  22. 22.

    Sheikholeslami M, Ghasemi A, Li Z, Shafee A, Saleem S. Influence of CuO nanoparticles on heat transfer behavior of PCM in solidification process considering radiative source term. Int J Heat Mass Transf. 2018;126:1252–64.

    CAS  Article  Google Scholar 

  23. 23.

    Mohammadein SA, Raslan K, Abdel-Wahed MS, Abedel-Aal EM. KKL-model of MHD CuO-nanofluid flow over a stagnation point stretching sheet with nonlinear thermal radiation and suction/injection. Results Phys. 2018;10:194–9.

    Article  Google Scholar 

  24. 24.

    Ismail KAR, Alves CLF, Modesto MS. Numerical and experimental study on the solidification of PCM around a vertical axially finned isothermal cylinder. Appl Therm Eng. 2001;21(1):53–77.

    CAS  Article  Google Scholar 

  25. 25.

    Sheikholeslami M, Arabkoohsar A, Jafaryar M. Impact of a helical-twisting device on nanofluid thermal hydraulic performance of a tube. J Therm Anal Calorim. 2019.

    Article  Google Scholar 

  26. 26.

    Sheikholeslami M, Rezaeianjouybari B, Darzi M, Shafee A, Li Z, Nguyen TK. Application of nano-refrigerant for boiling heat transfer enhancement employing an experimental study. Int J Heat Mass Transf. 2019;141:974–80.

    CAS  Article  Google Scholar 

  27. 27.

    Sheikholeslami M, Jafaryar M, Ali JA, Hamad SM, Divsalar A, Shafee A, Nguyen-Thoi T, Li Z. Simulation of turbulent flow of nanofluid due to existence of new effective turbulator involving entropy generation. J Mol Liq. 2019;291:111283.

    CAS  Article  Google Scholar 

  28. 28.

    Sheikholeslami M, Jafaryar M, Hedayat M, Shafee A, Li Z, Nguyen TK, Bakouri M. Heat transfer and turbulent simulation of nanomaterial due to compound turbulator including irreversibility analysis. Int J Heat Mass Transf. 2019;137:1290–300.

    CAS  Article  Google Scholar 

  29. 29.

    Sheikholeslami Mohsen, Arabkoohsar Ahmad, Khan Ilyas, Shafee Ahmad, Li Zhixiong. Impact of Lorentz forces on Fe3O4-water ferrofluid entropy and exergy treatment within a permeable semi annulus. J Clean Prod. 2019;221:885–98.

    CAS  Article  Google Scholar 

  30. 30.

    Sheikholeslami M, Haq R-L, Shafee A, Li Z, Elaraki YG, Tlili I. Heat transfer simulation of heat storage unit with nanoparticles and fins through a heat exchanger. Int J Heat Mass Transf. 2019;135:470–8.

    CAS  Article  Google Scholar 

  31. 31.

    Sheikholeslami M. Solidification of NEPCM under the effect of magnetic field in a porous thermal energy storage enclosure using CuO nanoparticles. J Mol Liq. 2018;263:303–15.

    CAS  Article  Google Scholar 

  32. 32.

    Das SK, Choi SUS, Yu W, Pradeep Y. Nanofluids: science and technology. Hoboken: Wiley; 2008.

    Google Scholar 

  33. 33.

    Nield DA, Bejan A. Convection in porous media. 4th ed. New York: Springer; 2013.

    Book  Google Scholar 

  34. 34.

    Minkowycz WJ, Sparrow EM, Abraham JP, editors. Nanoparticle heat transfer and fluid flow. New York: CRC Press; 2013.

    Google Scholar 

  35. 35.

    Shenoy A, Sheremet M, Pop I. Convective flow and heat transfer from wavy surfaces: viscous fluids, porous media and nanofluids. New York: CRC Press; 2016.

    Book  Google Scholar 

  36. 36.

    Buongiorno J, et al. A benchmark study on the thermal conductivity of nanofluids. J Appl Phys. 2009;106:1–14.

    Article  Google Scholar 

  37. 37.

    Mahian O, Kianifar A, Kalogirou SA, Pop I, Wongwises S. A review of the applications of nanofluids in solar energy. Int J Heat Mass Transf. 2013;57:582–94.

    CAS  Article  Google Scholar 

  38. 38.

    Mahian O, Pop I, Sahin AZ, Oztop HF, Wongwises S. Irreversibility analysis of a vertical annulus using TiO2/water nanofluid with MHD flow effects. Int J Heat Mass Transf. 2013;64:671–9.

    CAS  Article  Google Scholar 

  39. 39.

    Mahian Omid, Kleinstreuer Clement, Al-Nimr Mohd A, Pop Ioan, Wongwises Somchai. A review of entropy generation in nanofluid flow. Int J Heat Mass Transf. 2013;65:514–32.

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to A. Arabkoohsar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sheikholeslami, M., Arabkoohsar, A., Shafee, A. et al. Second law analysis of a porous structured enclosure with nano-enhanced phase change material and under magnetic force. J Therm Anal Calorim 140, 2585–2599 (2020).

Download citation


  • Second law
  • Thermal storage
  • Galerkin FEM
  • Solidification
  • Darcy law