Skip to main content
Log in

Analysis of chemically reactive species with mixed convection and Darcy–Forchheimer flow under activation energy: a novel application for geothermal reservoirs

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the present article, an analysis has been performed to discuss the impact of steady mixed convection with Darcy–Forchheimer flow towards linear surface. Investigation has been achieved in the presence of Arrhenius activation energy and radiative heat flux which are associated with the heat and mass transport analysis which has not been performed so far. Porous media features are elaborated by utilizing Darcy–Forchheimer relation. Boundary-layer idea is employed for the simplification of governing expressions. The resulting set of mathematical expression is now solved with the help of bvp4c MATLAB package which applies a three-stage Lobatto IIIa finite-difference collocation scheme. Diagrams are drawn against pertinent parameters such as buoyancy forces ratio parameter, mixed convection parameter, porosity parameter, local inertia coefficient, activation energy, chemical reaction rate constant, Schmidt number, temperature difference ratio, exponentially fitted constant, magnetic parameter, radiation parameter, first-order and second-order slip parameter, suction or injection parameter and Prandtl number. It is observed that both mixed convection and activation energy parameters have an opposite impact on species profile. Also the present results are compared with those available in the literature for some cases, and an excellent agreement is found between them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Abbreviations

\(\bar{A}\), \(\bar{B}\) :

Constant

\(B(x)\) :

Magnetic field

\(C_{\text{w}}\) :

Wall concentration

\(C_{\text{o}}\) :

Reference concentration

\(U_{\text{w}}\) :

Wall velocity

\(U_{0}\) :

Reference velocity

\(T\) :

Temperature (K)

\(T_{\text{w}}\) :

Wall temperature

\(T_{\text{o}}\) :

Reference temperature

\(T_{\infty }\) :

Free-stream temperature

C p :

Specific heat \(({\text{J}}\,{\text{kg}}^{ - 1} \,{\text{K}}^{ - 1} )\)

C f :

Skin friction

f :

Dimensionless stream function

\(F_{\text{r}}\) :

Local inertial coefficient

k :

Thermal conductivity \(({\text{W}}\,{\text{m}}^{ - 1} \,{\text{K}}^{ - 1} )\)

K n :

Knudsen number

\(K_{\text{p}}\) :

Porosity parameter

L :

Characteristic length

N :

Ratio of thermal and solutal expansions

\(N_{\text{ux}}\) :

Local Nusselt number

Pr:

Prandtl number

R :

Radiation parameter

M :

Magnetic field \(({\text{A/m}})\)

Rex :

Local Reynolds number

\(V_{\text{o}}\) :

Initial strength of suction

E :

Activation energy

Sc:

Schmidt number

(u, v):

Components of velocity \(({\text{m}}\,{\text{s}}^{ - 1} )\)

(x, y):

Coordinate axes normal to sheet (m)

\(\mu\) :

Dynamic viscosity \(({\text{N}}\,{\text{s}}\,{\text{m}}^{ - 1} )\)

\(\theta\) :

Dimensionless temperature

S :

Suction/injection parameter

\(\gamma\) :

First-order slip

\(\delta\) :

Second-order slip

\(\lambda_{1}\) :

Mean free molecular path

\(\alpha\) :

Momentum accommodation

\(\varGamma\) :

Temperature difference ratio

\(\rho\) :

Density \(({\text{k}}\,{\text{g}}\,{\text{m}}^{ - 3} )\)

\(k^{ * }\) :

Mean absorption coefficient

\(\sigma\) :

Chemical reaction rate constant

\(\sigma_{1}\) :

Stefan–Boltzmann constant

\(\psi\) :

Stream function \(({\text{m}}^{ 2} \,{\text{s}}^{ - 1} )\)

\(\lambda\) :

Mixed convection parameter

References

  1. Mahanthesh B, Kumar PBS, Gireesha BJ, Manjunatha S, Gorla RSR. Nonlinear convective and radiated flow of tangent hyperbolic liquid due to stretched surface with convective condition. Results Phys. 2017;7:2404–10.

    Article  Google Scholar 

  2. Waqas M, Alsaedi A, Shehzad SA, Hayat T, Asghar S. Mixed convective stagnation point flow of Carreau fluid with variable properties. J Braz Soc Mech Sci Eng. 2017;39:3005–17.

    Article  CAS  Google Scholar 

  3. Waqas M, Khan MI, Hayat T, Alsaedi A. Numerical simulation for magneto Carreau nanofluid model with thermal radiation: a revised model. Comput Methods Appl Mech Eng. 2017;324:640–53.

    Article  Google Scholar 

  4. Khan MI, Waqas M, Hayat T, Alsaedi A, Khan MI. Significance of nonlinear radiation in mixed convection flow of magneto Walter-B nanoliquid. Int J Hydrog Energy. 2017;42:26408–16.

    Article  CAS  Google Scholar 

  5. Bhattacharyya K, Mukhopadhyay S, Layek GC, Pop I. Effects of thermal radiation on micropolar fluid flow and heat transfer over a porous shrinking sheet. Int J Heat Mass Transf. 2012;55(11–12):2945–52.

    Article  CAS  Google Scholar 

  6. Bhattacharyya K. MHD stagnation-point flow of Casson fluid and heat transfer over a stretching sheet with thermal radiation. Int J Thermodyn. 2013;169674:1–9.

    Google Scholar 

  7. Hayat T, Waqas M, Shehzad SA, Alsaedi A. Mixed convection radiative flow of Maxwell fluid near a stagnation point with convective condition. J Mech. 2013;29(3):403–9.

    Article  Google Scholar 

  8. Hayat T, Aziz A, Muhammad T, Alsaedi A. Numerical simulation for Darcy–Forchheimer three-dimensional rotating flow of nanofluid with prescribed heat and mass flux conditions. J Therm Anal Calorim. 2018;136(5):2087–95.

    Article  Google Scholar 

  9. Hayat T, Aziz A, Muhammad T, Alsaedi A. Effects of binary chemical reaction and Arrhenius activation energy in Darcy–Forchheimer three-dimensional flow of nanofluid subject to rotating frame. J Therm Anal Calorim. 2018;136(4):1769–79.

    Article  Google Scholar 

  10. Asadollahi A, Esfahani JA, Ellahi R. Evacuating liquid coatings from a diffusive oblique fin in micro-/mini-channels. J Therm Anal Calorim. 2019;12:1–9.

    Google Scholar 

  11. Khan LA, Raza M, Mir NA, Ellahi R. Effects of different shapes of nanoparticles on peristaltic flow of MHD nanofluids filled in an asymmetric channel. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08348-9.

    Article  Google Scholar 

  12. Mishra, SR, Shahid A, Jena S, Bhatti MM. Buoyancy-driven chemicalized EMHD nanofluid flow through a stretching plate with Darcy–Brinkman–Forchheimer porous medium. Heat Transf Res. 2019; 50(11):1105–26.

    Article  Google Scholar 

  13. Marin M, Vlase S, Ellahi R, Bhatti MM. On the partition of energies for the backward in time problem of thermoelastic materials with a dipolar structure. Symmetry. 2019;11(7):863.

    Article  Google Scholar 

  14. Waqas H, Khan SU, Hassan M, Bhatti MM, Imran M. Analysis on the bioconvection flow of modified second-grade nanofluid containing gyrotactic microorganisms and nanoparticles. J Mol Liquids. 2019;291:111231.

    Article  CAS  Google Scholar 

  15. Bhatti MM, Rashidi MM. Study of heat and mass transfer with Joule heating on magnetohydrodynamic (MHD) peristaltic blood flow under the influence of Hall effect. Propul Power Res. 2017;6(3):177–85.

    Article  Google Scholar 

  16. Bestman AR. Natural convection boundary layer with suction and mass transfer in a porous medium. Int J Energy Res. 1990;14(4):389–96.

    Article  CAS  Google Scholar 

  17. Makinde OD, Olanrewaju PO, Charles WM. Unsteady convection with chemical reaction and radiative heat transfer past a flat porous plate moving through a binary mixture. Afrika Matematika. 2011;22(1):65–78.

    Article  Google Scholar 

  18. Maleque K. Effects of exothermic/endothermic chemical reactions with Arrhenius activation energy on MHD free convection and mass transfer flow in presence of thermal radiation. J. Thermodyn. 2013;692516:1–11.

    Article  Google Scholar 

  19. Awad FG, Motsa S, Khumalo M. Heat and mass transfer in unsteady rotating fluid flow with binary chemical reaction and activation energy. PLoS ONE. 2014;9(9):107622.

    Article  Google Scholar 

  20. Majeed A, Zeeshan A, Mahmood T, Rahman SU, Khan I. Impact of magnetic field and second-order slip flow of Casson liquid with heat transfer subject to suction/injection and convective boundary condition. J magn. 2019;24(1):81–9.

    Article  Google Scholar 

  21. Shafique Z, Mustafa M, Mushtaq A. Boundary layer flow of Maxwell fluid in rotating frame with binary chemical reaction and activation energy. Results Phys. 2016;6:627–33.

    Article  Google Scholar 

  22. Forchheimer P. Wasserbewegung durch boden. Zeitschriftdes Vereins deutscher Ingenieure. 1901;45:1782–8.

    Google Scholar 

  23. Muskat M. The flow of homogeneous fluids through porous media. Soil Sci. 1938;46(2):1–169.

    Article  Google Scholar 

  24. Shehzad SA, Abbasi FM, Hayat T, Alsaedi A. Cattaneo–Christov heat flux model for Darcy–Forchheimer flow of an Oldroyd-B fluid with variable conductivity and non-linear convection. J Mol Liq. 2016;224:274–8.

    Article  CAS  Google Scholar 

  25. Pal D, Mondal H. Hydromagnetic convective diffusion of species in Darcy–Forchheimer porous medium with non-uniform heat source/sink and variable viscosity. Int Commun Heat Mass Transf. 2012;9(7):913–7.

    Article  Google Scholar 

  26. Ganesh NV, Hakeem AKA, Ganga B. Darcy-Forchheimer flow of hydromagnetic nanofluid over a stretching/shrinking sheet in a thermally stratified porous medium with second order slip, viscous and Ohmic dissipations effects. Ain Shams Eng J. 2016;9:939–51.

    Article  Google Scholar 

  27. Seddeek MA. Influence of viscous dissipation and thermophoresis on Darcy–Forchheimer mixed convection in a fluid saturated porous media. J Colloid Interface Sci. 2006;293:137–42.

    Article  CAS  PubMed  Google Scholar 

  28. Hayat T, Muhammad T, Al-Mezal S, Liao SJ. Darcy–Forchheimer flow with variable thermal conductivity and Cattaneo–Christov heat flux. Int J Numer Method H. 2016;26:2355–69.

    Article  Google Scholar 

  29. Rami YJ, Fawzi A, Fahmi AAR. Darcy-Forchheimer mixed convection heat and mass transfer in fluid saturated porous media. Int J Numer Methods Heat Fluid Flow. 2001;11(6):600–18.

    Article  Google Scholar 

  30. Sobieski W, Trykozko A. Sensitivity aspects of Forchheimer’s approximation. Trans Porous Media. 2011;89(2):155–64.

    Article  CAS  Google Scholar 

  31. Hayat T, Haider F, Muhammad T, Alsaedi A. Darcy–Forchheimer flow with Cattaneo–Christov heat flux and homogeneous hetero-geneous reactions. PLoS ONE. 2017;12(4):e0174938.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Alzahrani AK. Importance of Darcy Forchheimer porous medium in 3D convective flow of carbon nanotubes. Phys Lett A. 2018;382(42):2938–43.

    Article  CAS  Google Scholar 

  33. Wu L. A slip model for rarefied gas flows at arbitrary Knudsen number. Appl Phys Lett. 2008;93(25):253103.

    Article  Google Scholar 

  34. Shampine LF, Gladwell I, Thompson S. Solving ODEs with matlab. Cambridge: Cambridge University Press; 2003.

    Book  Google Scholar 

  35. Magyari E, Keller B. Heat and mass transfer in the boundary layers on an exponentially stretching continuous surface. J Phys D Appl Phys. 1999;32(5):577.

    Article  CAS  Google Scholar 

  36. Bidin B, Nazar R. Numerical solution of the boundary layer flow over an exponentially stretching sheet with thermal radiation. Eur J Sci Res. 2009;33(4):710–7.

    Google Scholar 

  37. Abd El-Aziz M. Viscous dissipation effect on mixed convection flow of a micropolar fluid over an exponentially stretching sheet. Can J Phys. 2009;87(4):359–68.

    Article  Google Scholar 

  38. Ishak A. MHD boundary layer flow due to an exponentially stretching sheet with radiation effect. Sains Malays. 2011;40(4):391–5.

    Google Scholar 

  39. Mukhopadhyay S. Slip effects on MHD boundary layer flow over an exponentially stretching sheet with suction/blowing and thermal radiation. Ain Shams Eng J. 2013;4(3):485–91.

    Article  Google Scholar 

Download references

Acknowledgements

The corresponding author is profoundly grateful to the Higher Education Commission (HEC) for their financial support under Start-Up Research Grant Program (SRGP) with Project No. 2495.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaqib Majeed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majeed, A., Zeeshan, A. & Noori, F.M. Analysis of chemically reactive species with mixed convection and Darcy–Forchheimer flow under activation energy: a novel application for geothermal reservoirs. J Therm Anal Calorim 140, 2357–2367 (2020). https://doi.org/10.1007/s10973-019-08978-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08978-z

Keywords

Navigation