Behaviour of silicon ointment for power-cable insulation under external heating

Abstract

The burning process and typical fire parameters of power-cable silicon ointment were explored experimentally using a cone calorimeter, and the effects of the external radiation heat flux (ERHF) and pool size were examined. The results showed that a shell with the appearance of numerous white convex particles was formed on the fuel surface soon after ignition and prevented the burning of the silicon ointment. These convex particles swelled with time, and the shell cracked under the influences of the ERHF and combustible gas release. The ERHF significantly affected the heat release rate (HRR) of the silicon ointment. Under low and high ERHFs, the HRR curve of the silicon ointment exhibited three and four stages, respectively. The peak HRR increased with the ERHF, and the influence of the pool size on the HRR of the silicon ointment was complex. The CO production rate of the silicon ointment increased continuously throughout the duration of the fire. The effect of the ERHF on the CO production rate was not significant. The CO production rate initially increased with the pool size but decreased when the pool size reached 9.5 cm.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Magalie C, Anne-Sophie C, Rodolphe S, et al. Fire behaviour of electrical cables in cone calorimeter: influence of cables structure and layout. Fire Saf J. 2018;99:12–21.

    Article  Google Scholar 

  2. 2.

    Sarazin J, Bachelet P, Bourbigot S. Fire behavior of simulated low voltage intumescent cables with and without electric current. J Fire Sci. 2017;35(3):179–94.

    CAS  Article  Google Scholar 

  3. 3.

    Zhang B, Zhang J, Li Q, et al. Effects of insulating material ageing on ignition time and heat release rate of the flame retardant cables. Procedia Eng. 2018;211:972–8.

    CAS  Article  Google Scholar 

  4. 4.

    Beji T, Verstockt S, Zavaleta P, et al. Flame spread monitoring and estimation of the heat release rate from a cable tray fire using video fire analysis (VFA). Fire Technol. 2016;52(3):611–21.

    Article  Google Scholar 

  5. 5.

    Huang X, Bi K, Liu X, et al. A model for predicting temperature produced by upward spreading cable fire under natural ventilation. Energy Procedia. 2015;66:177–80.

    Article  Google Scholar 

  6. 6.

    Lang H, Huber E. Experiments on development, spreading and detection of cable fires. Nucl Eng Des. 1991;125(3):325–8.

    CAS  Article  Google Scholar 

  7. 7.

    Meacham B. Factors affecting the early detection of fire in electronic equipment and cable installations. Fire Technol. 1993;29(1):34–59.

    Article  Google Scholar 

  8. 8.

    Marke P. Cable tunnels—an integrated fire detection/suppression system for rapid extinguishment. Fire Technol. 1991;27(3):219–33.

    Article  Google Scholar 

  9. 9.

    Ndubizu C, Ananth R, Williams F. Suppression and extinguishment of boundary layer flame over communication cable by ‘gas-like’ water mist in cross-flow. J Fire Sci. 2008;26(6):531–60.

    CAS  Article  Google Scholar 

  10. 10.

    Matheson A, Charge R, Corneliussen T. Properties of PVC compounds with improved fire performance for electrical cables. Fire Saf J. 1992;19(1):55–72.

    CAS  Article  Google Scholar 

  11. 11.

    Courty L, Garo J. External heating of electrical cables and auto-ignition investigation. J Hazard Mater. 2017;321:528–36.

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Zhang J, Zhang B, Fan M, et al. Effects of external heat radiation on combustion and toxic gas release of flame retardant cables. Mater Sci Forum. 2017;898:2392–8.

    Article  Google Scholar 

  13. 13.

    Zhang B, Zhang J, Xie H, et al. Fire performance analysis of PVC and cabtyre cables based upon the ignition characteristics and fire growth indexes. Chin Mater Conf 2017; 861–869.

  14. 14.

    Meinier R, Sonnier R, Zavaleta P, et al. Fire behavior of halogen-free flame retardant electrical cables with the cone calorimeter. J Hazard Mater. 2017;342:306–16.

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Shen R, Hatanaka L, Ahmed L, et al. Cone calorimeter analysis of flame retardant poly (methyl methacrylate)-silica nanocomposites. J Therm Anal Calorim. 2016;128(3):1–9.

    Google Scholar 

  16. 16.

    Grześkowiak W. Effectiveness of new wood fire retardants using a cone calorimeter. J Fire Sci. 2017;35(6):565–76.

    Article  CAS  Google Scholar 

  17. 17.

    Bonati A, Rainieri S, Bochicchio G, et al. Characterization of thermal properties and combustion behaviour of asphalt mixtures in the cone calorimeter. Fire Saf J. 2015;74:25–31.

    CAS  Article  Google Scholar 

  18. 18.

    Chen R, Lu S, Li C, et al. Correlation analysis of heat flux and cone calorimeter test data of commercial flame-retardant ethylene-propylene-diene monomer (EPDM) rubber. J Therm Anal Calorim. 2016;123(1):545–56.

    CAS  Article  Google Scholar 

  19. 19.

    Zhang B, Zhang J, Wang L, et al. Investigation on effects of thickness on ignition characteristics and combustion process of the oil-impregnated transformer insulating paperboard. J Therm Anal Calorim. 2018;132(1):29–38.

    CAS  Article  Google Scholar 

  20. 20.

    Hernandez N, Sonnier R, Giraud S. Influence of grammage on heat release rate of polypropylene fabrics. J Fire Sci. 2017;36(1):30–46.

    Article  CAS  Google Scholar 

  21. 21.

    Noaki M, Delichatsios M, Yamaguchi J, et al. Heat release rate of wooden cribs with water application for fire suppression. Fire Safety J. 2018;95:170–9.

    Article  Google Scholar 

  22. 22.

    Madrigal J, Guijarro M, Hernando C, et al. Estimation of peak heat release rate of a forest fuel bed in outdoor laboratory conditions. J Fire Sci. 2011;29(1):53–70.

    Article  Google Scholar 

Download references

Acknowledgements

The present work was supported by the Science and Technology Project of State Grid Corporation of China (Grant No. 521205180011) and the Anhui Provincial Natural Science Foundation (Grant No. 1408085MKL94).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Jiaqing Zhang or Bosi Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Zhang, B., Li, W. et al. Behaviour of silicon ointment for power-cable insulation under external heating. J Therm Anal Calorim 140, 2749–2756 (2020). https://doi.org/10.1007/s10973-019-08967-2

Download citation

Keywords

  • Silicon ointment
  • Burning process
  • Fire parameter
  • External heating
  • Cone calorimeter