Skip to main content
Log in

Supramolecular structures, thermal decomposition mechanism and heat capacity of the novel binuclear Tb(III) and Dy(III) complexes with 2,3-dimethoxybenzoic acid and 5,5′-dimety-2,2′-bipyridine

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Two novel binuclear lanthanide complexes [Tb(2,3-DMOBA)3(5,5′-DM-2,2′-bipy)]2·C2H5OH (1) and [Dy(2,3-DMOBA)3(5,5′-DM-2,2′-bipy)]2·C2H5OH (2) (2,3-DMOBA = 2,3-dimethoxybenzoate, 5,5′-DM-2,2′-bipy = 5,5′-dimety-2,2′-bipyridine) have been successfully synthesized and structurally validated by single-crystal diffraction. The results of single-crystal analyses indicate the complexes contains one free ethanol molecule, and each center Ln(III) is nine-coordinated, exhibiting a distorted monocapped square anti-prismatic coordination geometry. The two center Ln(III) are bound by four 2,3-DMOBA ligands, two of which are bridging bidentate and the other two are bridging–chelating. The adjacent binuclear complexes can form 1D supramolecular structure by a pair of alternating identical C–H···O hydrogen bonding interactions, which further form 2D sheet structures. The thermal behavior of these complexes is investigated by TG-DSC/FTIR. What is more, the heat capacities of the complexes 12 are measured by DSC at 259.15–346.15 K, and the result indicates that the heat capacity values of the complexes gradually increased with the increase in temperature. In addition, the thermodynamic functions values (HT − H298.15K) and (ST − S298.15K) of the complexes 12 are calculated according to the fitted polynomial equations and the thermodynamic equation. The luminescence property of complex 1 is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Maji S, Viswanathan KS. Sensitization of uranium fluorescence using 2,6-pyridinedicarboxylic acid: application for the determination of uranium in the presence of lanthanides. J Lumin. 2009;129(11):1242–8. https://doi.org/10.1016/j.jlumin.2009.06.018.

    Article  CAS  Google Scholar 

  2. Safarbali R, Yaftian MR, Zamani A. Solvent extraction-separation of La(III), Eu(III) and Er(III) ions from aqueous chloride medium using carbamoyl-carboxylic acid extractants. J Rare Earths. 2016;34(1):91–8. https://doi.org/10.1016/s1002-0721(14)60583-4.

    Article  CAS  Google Scholar 

  3. Deng ZP, Kang W, Huo LH, Zhao H, Gao S. Rare-earth organic frameworks involving three types of architecture tuned by the lanthanide contraction effect: hydrothermal syntheses, structures and luminescence. Dalton Trans. 2010;39(27):6276–84. https://doi.org/10.1039/c0dt00031k.

    Article  CAS  PubMed  Google Scholar 

  4. Lv YG, Zhang JC, Cao WL, Fu YL. Enhanced luminescence of novel rare earth complexes Eu(3,5-DNBA)3Phen in nano-TiO2. Spectrochim Acta A Mol Biomol Spectrosc. 2009;72(1):22–5. https://doi.org/10.1016/j.saa.2008.07.003.

    Article  CAS  PubMed  Google Scholar 

  5. Hatanaka M, Wakabayashi T. Theoretical study of lanthanide-based in vivo luminescent probes for detecting hydrogen peroxide. J Comput Chem. 2019;40(2):500–6. https://doi.org/10.1002/jcc.25737.

    Article  CAS  PubMed  Google Scholar 

  6. Wang YW, Zhang YL, Dou W, Zhang AJ, Qin WW, Liu WS. Synthesis, radii dependent self-assembly crystal structures and luminescent properties of rare earth(III) complexes with a tripodal salicylic derivative. Dalton Trans. 2010;39(38):9013–21. https://doi.org/10.1039/c001780a.

    Article  CAS  PubMed  Google Scholar 

  7. Cagnin F, Davolos MR, Castellano EE. A polymeric europium complex with the ligand thiophene-2-carboxylic acid: synthesis, structural and spectroscopic characterization. Polyhedron. 2014;67:65–72. https://doi.org/10.1016/j.poly.2013.08.063.

    Article  CAS  Google Scholar 

  8. Liu QY, Wang WF, Wang YL, Shan ZM, Wang MS, Tang J. Diversity of lanthanide(III)-organic extended frameworks with a 4,8-disulfonyl-2,6-naphthalenedicarboxylic acid ligand: syntheses, structures, and magnetic and luminescent properties. Inorg Chem. 2012;51(4):2381–92. https://doi.org/10.1021/ic2023727.

    Article  CAS  PubMed  Google Scholar 

  9. Yuan R, Chen C, Zhang N. Targeted highly-thermostable metal-organic frameworks directed by imidazole: syntheses, structures, thermal behaviors and luminescent properties. J Inorg Organomet Polym. 2012;22(2):507–13. https://doi.org/10.1007/s10904-011-9649-5.

    Article  CAS  Google Scholar 

  10. Feng R, Jiang FL, Wu MY, Chen L, Yan CF, Hong MC. Structures and photoluminescent properties of the lanthanide coordination complexes with hydroxyquinoline carboxylate ligands. Cryst Growth Design. 2010;10(5):2306–13. https://doi.org/10.1021/cg100026d.

    Article  CAS  Google Scholar 

  11. Zhang HB, Peng Y, Shan XC, Tian CB, Ping L, Du SW. Lanthanide metal organic frameworks based on octahedral secondary building units: structural, luminescent, and magnetic properties. Inorg Chem Commun. 2011;14(7):1165–9. https://doi.org/10.1016/j.inoche.2011.04.014.

    Article  CAS  Google Scholar 

  12. Peng JB, Kong XJ, Ren YP, Long LS, Huang RB, Zheng LS. Trigonal bipyramidal Dy5 cluster exhibiting slow magnetic relaxation. Inorg Chem. 2012;51(4):2186–90. https://doi.org/10.1021/ic202147h.

    Article  CAS  PubMed  Google Scholar 

  13. Bai ZS, Xu J, Okamura TA, Chen MS, Sun WY, Ueyama N. Novel dense organic-lanthanide hybrid architectures: syntheses, structures and magnetic properties. Dalton Trans. 2009;14:2528–39. https://doi.org/10.1039/b816205k.

    Article  CAS  Google Scholar 

  14. Kofod N, Arppe-Tabbara R, Sorensen TJ. Electronic energy levels of dysprosium(III) ions in solution. assigning the emitting state and the intraconfigurational 4f–4f transitions in the vis-NIR region and photophysical characterization of Dy(III) in water, methanol, and dimethyl sulfoxide. J Phys Chem A. 2019;123(13):2734–44. https://doi.org/10.1021/acs.jpca.8b12034.

    Article  CAS  PubMed  Google Scholar 

  15. Soek RN, Ferreira CM, Santana FS, Hughes DL, Poneti G, Ribeiro RR, et al. Structure and magnetic properties of two new lanthanide complexes with the 1-((E)-2-pyridinylmethylidene)semicarbazone ligand. J Mol Struct. 2019;1184:254–61. https://doi.org/10.1016/j.molstruc.2019.02.036.

    Article  CAS  Google Scholar 

  16. Matsushita AFY, Pais A, Valente AJM. Energy transfer and multicolour tunable emission of Eu, Tb(PSA)Phen composites. Colloids Surf A. 2019;569:93–101. https://doi.org/10.1016/j.colsurfa.2019.02.049.

    Article  CAS  Google Scholar 

  17. Su SQ, Wang S, Song XZ, Song SY, Qin C, Zhu M, et al. Syntheses, structures, photoluminescence, and magnetic properties of (3,6)-and 4-connected lanthanide metal-organic frameworks with a semirigid tricarboxylate ligand. Dalton Trans. 2012;41(16):4772–9. https://doi.org/10.1039/c2dt12346k.

    Article  CAS  PubMed  Google Scholar 

  18. Qi XX, Ren N, Xu SL, Zhang JJ, Zong GC, Gao J, et al. Lanthanide complexes with 3,4,5-triethoxybenzoic acid and 1,10-phenanthroline: synthesis, crystal structures, thermal decomposition mechanism and phase transformation kinetics. RSC Adv. 2015;5(12):9261–71. https://doi.org/10.1039/c4ra12063a.

    Article  CAS  Google Scholar 

  19. Wu XH, He SM, Ren N, Zhang JJ. Crystal structures, thermal decomposition kinetics and thermodynamic properties of lanthanide Ho(III) complex with 2,5-dichlorobenzoic acid and 5,5′-dimethyl-2,2′-bipyridine. Sci Sin Chim. 2019;49:978–89. https://doi.org/10.1360/N032018-00222.

    Article  Google Scholar 

  20. Ren N, Wang F, Zhang JJ, Zheng XF. Progress in thermal analysis kinetics. Acta Phys Chim Sin. 2019;35:0001–9. https://doi.org/10.3866/pku.whxb201905062.

    Article  CAS  Google Scholar 

  21. Shen PP, Zhu MM, Ren N, Zhang JJ, Wang SP. Four novel lanthanide complexes with 4-ethylbenzoic acid and 5,5′-dimethy-2,2′-bipyridine: structures, luminescent, thermal properties and bacteriostatic activities. Appl Organomet Chem. 2017;31(12):e3886. https://doi.org/10.1002/aoc.3886.

    Article  CAS  Google Scholar 

  22. Melnikov P, Arkhangelsky IV, Nascimento VA, de Oliveira LCS, Silva AF, Zanoni LZ. Thermal properties of europium nitrate hexahydrate Eu(NO3)3•6H2O. J Therm Anal Calorim. 2016;128(3):1353–8. https://doi.org/10.1007/s10973-016-6047-9.

    Article  CAS  Google Scholar 

  23. Yang HP, Yan R, Chen HP, Lee DH, Zheng CC. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 2007;86(12–13):1781–8. https://doi.org/10.1016/j.fuel.2006.12.013.

    Article  CAS  Google Scholar 

  24. Wang Y, Shen PP, Ren N, Zhang JJ, Geng LN, Wang SP, et al. A series of lanthanide complexes with different N-donor ligands: synthesis, structures, thermal properties and luminescence behaviors. RSC Adv. 2016;6(75):70770–80. https://doi.org/10.1039/c6ra11393a.

    Article  CAS  Google Scholar 

  25. Wu XH, Ren N, Zhang JJ, Wang DQ. Lanthanide complexes with 2-bromo-5-methoxybenzoic acid and 5,5′-dimethyl-2,2′-bipyridine: crystal structures, thermodynamic properties and luminescence behaviors. J Chem Thermodyn. 2018;123:99–106. https://doi.org/10.1016/j.jct.2018.04.002.

    Article  CAS  Google Scholar 

  26. Gao HL, Jiang L, Liu S, Shen HY, Wang WM, Cui JZ. Multiple magnetic relaxation processes, magnetocaloric effect and fluorescence properties of rhombus-shaped tetranuclear rare earth complexes. Dalton Trans. 2016;45(1):253–64. https://doi.org/10.1039/c5dt03790e.

    Article  CAS  PubMed  Google Scholar 

  27. Sun CM, Shen J, Cui RW, Yuan FZ, Zhang H, Wu X. Silver nanoflowers-enhanced Tb(III)/La(III) co-luminescence for the sensitive detection of dopamine. Anal Bioanal Chem. 2019;411(7):1375–81. https://doi.org/10.1007/s00216-018-01568-2.

    Article  CAS  PubMed  Google Scholar 

  28. Liu YH, Kong WH, Yang ZH, Dai M, Shi L, Guo DC. Synthesis and fluorescence properties of Eu3+, Tb3+ complexes with Schiff base derivatives. J Fluoresc. 2016;26(2):567–76. https://doi.org/10.1007/s10895-015-1741-8.

    Article  CAS  PubMed  Google Scholar 

  29. Li HL, Liu YJ, Zheng R, Ma X, Chen LJ, Zhao JW. Syntheses, structures and fluorescence properties of three rare-earth containing docosatungstates. Spectrochim Acta Part A. 2017;176:114–22. https://doi.org/10.1016/j.saa.2017.01.016.

    Article  CAS  Google Scholar 

  30. Zhu MM, Zhang Z, Ren N, Wang SP, Zhang JJ. Rare earth complexes with 3,4-dimethylbenzoic acid and 2,2:6′,2″-terpyridine: synthesis, crystal structures, luminescence and thermodynamic properties. Inorg Chim Acta. 2019;484:311–8. https://doi.org/10.1016/j.ica.2018.09.061.

    Article  CAS  Google Scholar 

  31. Cunha CS, Köppen M, Terraschke H, Friedrichs G, Malta OL, Stock N, et al. Luminescence tuning and single-phase white light emitters based on rare earth ions doped into a bismuth coordination network. J Mater Chem C. 2018;6(46):12668–78. https://doi.org/10.1039/c8tc04442b.

    Article  CAS  Google Scholar 

  32. Feng SY, Li WX, Zheng YS, Xin XD, Guo F, Cao XF. Syntheses and luminescence properties of two novel lanthanide (III) perchlorate complexes with phenacyl p-tolyl sulfoxide. J Lumin. 2015;162:92–6. https://doi.org/10.1016/j.jlumin.2015.01.057.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research work was supported by the National Natural Science Foundation of China (No. 21803016).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ning Ren or Jian-Jun Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 110 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, YY., Ren, N., He, SM. et al. Supramolecular structures, thermal decomposition mechanism and heat capacity of the novel binuclear Tb(III) and Dy(III) complexes with 2,3-dimethoxybenzoic acid and 5,5′-dimety-2,2′-bipyridine. J Therm Anal Calorim 140, 2435–2445 (2020). https://doi.org/10.1007/s10973-019-08944-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08944-9

Keywords

Navigation