Skip to main content
Log in

Research on the effect of bubble dynamics and turbulent kinetic energy on heat transfer in mini-channels filled with metal foam

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper presents an investigation of the boiling heat transfer of R141b in a mini-channel with a 2.42-mm inner diameter filled with metal foam. Investigations are performed at velocity of 0.01 m s−1 and temperature of 450 K. The coupled level set and volume-of-fluid method is applied to simulate flow boiling in metal foam. It considers that the bubble number and the average bubble area have influence on the heat transfer coefficient. The simulation model is verified by experimental data with an emphasis on the effect of boiling bubbles and turbulent kinetic energy on heat transfer. The simulation results show that even though the bubble motion range and vortices area is smaller, more vortices appear in the channel filled with foam metal, which increase the mixing frequency and improve the heat transfer performance. Meanwhile, the heat transfer coefficient is inversely proportional to the average bubble area but proportional to the bubble number. The relationship between turbulent kinetic energy and heat transfer coefficient is also compared. Results indicate that the differentiation of turbulent kinetic energy to time appears consistent with the heat transfer coefficient in the mini-channel filled with metal foam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

C p :

Specific heat capacity (J kg−1 K−1)

D :

Sphere diameter (m)

d :

Shortest distance to the interface (m)

E :

VOF model treats energy

F :

Volume force (N)

F st :

Surface tension force (N)

F sl :

Shear lift force (N)

F du :

Unsteady drag force (N)

F qsd :

Quasi-steady drag force (N)

F p :

Hydraulic pressure force (N)

F cp :

Contact pressure force (N)

F b :

Buoyancy force (N)

F r :

Resistance force (N)

F f :

Friction force (N)

h :

Grid spacing

h c :

Convective heat transfer coefficient (W m−2 K−1)

h fg :

Latent heat of evaporation (kJ kg−1)

K :

Turbulent kinetic energy (J kg−1)

k eff :

Effective thermal conductivity (W m−1 K−1)

k :

Curvature

L :

Tetradecahedron length (m)

l :

Characteristic length (m)

m :

Mass source term

:

Mass transfer

N :

Number of bubbles

Nu:

Nusselt number \( {\text{Nu}} = \frac{{h_{\text{c}} l}}{{k_{\text{eff}} }} \)

n :

Normal vector

PPI:

Pores per inch

S :

Source term

T :

Temperature (K)

u :

Underlying velocity field

Pr:

Turbulent Prandtl number \( { \Pr } = \frac{{\mu C_{\text{p}} }}{{k_{\text{eff}} }} \)

α :

Volume fraction

ρ :

Density (kg m−3)

σ :

Surface tension (N m−1)

μ :

Viscosity (Pa s)

ave:

Average

Ɩ:

Liquid

v:

Vapor

References

  1. Kandlikar SG, Grande WJ. Evolution of microchannel flow passages—thermohydraulic performance and fabrication technology. Heat Transf Eng. 2003;24(1):3–17.

    Article  CAS  Google Scholar 

  2. Zhu Y, Hu H, Sun S, Ding G. Flow boiling of refrigerant in horizontal metal-foam filled tubes: part 1—two-phase flow pattern visualization. Int J Heat Mass Transf. 2015;91:446–53.

    Article  CAS  Google Scholar 

  3. Zhu Y, Hu H, Sun S, Ding G. Flow boiling of refrigerant in horizontal metal-foam filled tubes: part 2—a flow-pattern based prediction method for heat transfer. Int J Heat Mass Transf. 2015;91:502–11.

    Article  CAS  Google Scholar 

  4. Abadi GB, Moon C, Kim KC. Flow boiling visualization and heat transfer in metal-foam-filled mini tubes—part I: flow pattern map and experimental data. Int J Heat Mass Transf. 2016;98:857–67.

    Article  Google Scholar 

  5. Abadi GB, Moon C, Kim KC. Flow boiling visualization and heat transfer in metal-foam-filled mini tubes—part II: developing predictive methods for heat transfer coefficient and pressure drop. Int J Heat Mass Transf. 2016;98:868–78.

    Article  Google Scholar 

  6. Diani A, Mancin S, Doretti L, Rossetto L. Low-GWP refrigerants flow boiling heat transfer in a 5 PPI copper foam. Int J Multiph Flow. 2015;76:111–21.

    Article  CAS  Google Scholar 

  7. Mancin S, Diani A, Doretti L, Rossetto L. R134a and R1234ze(E) liquid and flow boiling heat transfer in a high porosity copper foam. Int J Heat Mass Transf. 2014;74:77–87.

    Article  CAS  Google Scholar 

  8. Gao W, Xu X, Liang X. Flow boiling of R134a in an open-cell metal foam mini-channel evaporator. Int J Heat Mass Transf. 2018;126:103–15.

    Article  Google Scholar 

  9. Xu HJ, Qu ZG, Tao WQ. Thermal transport analysis in parallel-plate channel filled with open-celled metallic foams. Int Commun Heat Mass Transf. 2011;38:868–73.

    Article  CAS  Google Scholar 

  10. Rehman T, Ali HM, Janjua MM, Sajjad U, Yan WM. A critical review on heat transfer augmentation of phase change materials embedded with porous materials/foams. Int J Heat Mass Transf. 2019;135:649–73.

    Article  CAS  Google Scholar 

  11. Rehman T, Ali HM, Saieed A, Pao W, Ali M. Copper foam/PCMs based heat sinks: an experimental study for electronic cooling systems. Int J Heat Mass Transf. 2018;127:381–93.

    Article  CAS  Google Scholar 

  12. Rehman T, Ali HM. Experimental investigation on paraffin wax integrated with copper foam based heat sinks for electronic components thermal cooling. Int Commun Heat Mass Transf. 2018;98:155–62.

    Article  CAS  Google Scholar 

  13. Qureshi ZA, Ali HM, Khushnood S. Recent advances on thermal conductivity enhancement of phase change materials for energy storage system: a review. Int J Heat Mass Transf. 2018;127:838–56.

    Article  CAS  Google Scholar 

  14. Liu Q, Palm B. Numerical study of bubbles rising and merging during convective boiling in micro-channels. Appl Therm Eng. 2016;99:1141–51.

    Article  CAS  Google Scholar 

  15. Liu Q, Wang W, Palm B. A numerical study of the transition from slug to annular flow in micro-channel convective boiling. Appl Therm Eng. 2017;112:73–81.

    Article  CAS  Google Scholar 

  16. Ling K, Son G, Sun DL, Tao WQ. Three dimensional numerical simulation on bubble growth and merger in microchannel boiling flow. Int J Therm Sci. 2015;98:135–47.

    Article  Google Scholar 

  17. Katiyar G, Karagadde S, Saha SK, Sharma A. Numerical modelling of bubble growth in microchannel using level set method. Int J Heat Mass Transf. 2016;101:719–32.

    Article  CAS  Google Scholar 

  18. Du J, Zhao C, Bo H. A modified model for bubble growth rate and bubble departure diameter in nucleate pool boiling covering a wide range of pressures. Appl Therm Eng. 2018;145:407–15.

    Article  Google Scholar 

  19. Mazzocco T, Ambrosini W, Kommajosyula R, Baglietto E. A reassessed model for mechanistic prediction of bubble departure and lift off diameters. Int J Heat Mass Transf. 2018;117:119–24.

    Article  Google Scholar 

  20. Raj S, Pathak M, Khan MK. An analytical model for predicting growth rate and departure diameter of a bubble in subcooled flow boiling. Int J Heat Mass Transf. 2017;109:470–81.

    Article  CAS  Google Scholar 

  21. Colombo M, Fairweather M. Prediction of bubble departure in forced convection boiling: a mechanistic model. Int J Heat Mass Transf. 2015;85:135–46.

    Article  CAS  Google Scholar 

  22. Setoodeh H, Ding W, Lucas D, Hampel U. Prediction of bubble departure in forced convection boiling with a mechanistic model that considers dynamic contact angle and base expansion. Energies. 2019;12:1950.

    Article  CAS  Google Scholar 

  23. Abdous MA, Holagh SG, Shamsaiee M, Saffari H. The prediction of bubble departure and lift-off radii in vertical U-shaped channel under subcooled flow boiling based on forces balance analysis. Int J Therm Sci. 2019;142:316–31.

    Article  CAS  Google Scholar 

  24. Esmaeilzadeh A, Amanifard N, Deylami HM. Comparison of simple and curved trapezoidal longitudinal vortex generators for optimum flow characteristics and heat transfer augmentation in a heat exchanger. Appl Therm Eng. 2017;125:1414–25.

    Article  Google Scholar 

  25. Ke Z, Chen CL, Li K, Wang S, Chen CH. Vortex dynamics and heat transfer of longitudinal vortex generators in a rectangular channel. Int J Heat Mass Transf. 2019;132:871–85.

    Article  Google Scholar 

  26. Kashyap U, Das K, Debnath BK. Effect of surface modification of a rectangular vortex generator on heat transfer rate from a surface to fluid: an extended study. Int J Therm Sci. 2018;134:269–81.

    Article  Google Scholar 

  27. Liu Y, Ma X, Ye X, Chen Y, Cheng Y, Lan Z. Heat transfer enhancement of annular finned tube exchanger using vortex generators: the effect of oriented functional circumferential arrangement. Therm Sci Eng Prog. 2019;10:27–35.

    Article  Google Scholar 

  28. Lee WH. A pressure iteration scheme for two-phase flow modeling. 1980.

  29. Fluent. ANSYS fluent 15.0 theory guide. Canonsburg: Fluent Inc; 2013.

    Google Scholar 

  30. Bai M, Chung JN. Analytical and numerical prediction of heat transfer and pressure drop in open-cell metal foams. Int J Therm Sci. 2011;50:869–80.

    Article  Google Scholar 

  31. Feng S, Shi M, Li Y, Lu TJ. Pore-scale and volume-averaged numerical simulations of melting phase change heat transfer in finned metal foam. Int J Heat Mass Transf. 2015;90:838–47.

    Article  Google Scholar 

  32. Moffat RJ. Describing the uncertainties in experimental results. Exp Therm Fluid Sci. 1988;1(1):3–17.

    Article  Google Scholar 

Download references

Acknowledgements

The financial support of the National Nature Science Foundation of China (Nos. 51406031, 51776033) and the Science Foundation of the Jilin province (Grant 20170101123JC) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Wei Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, HW., Li, HY., Zheng, LT. et al. Research on the effect of bubble dynamics and turbulent kinetic energy on heat transfer in mini-channels filled with metal foam. J Therm Anal Calorim 141, 69–81 (2020). https://doi.org/10.1007/s10973-019-08919-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08919-w

Keywords

Navigation