Thermal analysis of interpenetrating polymer networks through molecular dynamics simulations: a comparison with experiments

Abstract

In this work, we verified the synthesis of a novel sequential interpenetrating polymer network, composed of poly(2-hexyl-ethylacrylate) and poly(n-butyl acrylate) named PHEA and PBuA, respectively, and we studied the physical properties by means of thermogravimetric analysis and differential scanning calorimetry techniques. An increase in the thermal stability is found with the increase in the density of the polymer network, and the amount of the absorbed monomer by the network has a great influence on its behavior and glass transition temperature. We supplement this job by applying molecular dynamics simulation methods (free volume, radial distribution function) to investigate the properties of these polymer networks and effects of composition ratios and temperature by introducing a new comprehensive and reproducible atomistic model for the generation and property evaluation of interpenetrating polymer networks. The simulation presented from the discontinuity in the different plots versus temperature of the specific volume or radial distribution function, demonstrates that the glass transition temperature (Tg) values were in good agreement with experimental values.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Wu C, Xu W. Atomistic molecular modelling of crosslinked epoxy resin. Polymer. 2006. https://doi.org/10.1016/j.polymer.2006.06.025.

    Article  Google Scholar 

  2. 2.

    Cao G. Atomistic studies of mechanical properties of graphene. Polymers. 2014. https://doi.org/10.3390/polym6092404.

    Article  Google Scholar 

  3. 3.

    Fredrickson GH. The theory of polymer dynamics. Curr Opin Solid State Mater Sci. 1996. https://doi.org/10.1016/S1359-0286(96)80106-9.

    Article  Google Scholar 

  4. 4.

    Nieminen RM. From atomistic simulation towards multiscale modelling of materials. J Phys: Condens Matter. 2002. https://doi.org/10.1088/0953-8984/14/11/306.

    Article  Google Scholar 

  5. 5.

    Vvedensky DD. Multiscale modelling of nanostructures. J Phys: Condens Matter. 2004. https://doi.org/10.1088/0953-8984/16/50/r01.

    Article  Google Scholar 

  6. 6.

    Holzapfel GA, Ogden RW. Constitutive modelling of arteries. In Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 2010. http://doi.org/10.1098/rspa.2010.0058.

  7. 7.

    Al Salhi MS, Alam J, Dass LA, Raja M. Recent advances in conjugated polymers for light emitting devices. Int J Mol Sci. 2011. https://doi.org/10.3390/ijms12032036.

    Article  Google Scholar 

  8. 8.

    Chodera JD, Noé F. Markov state models of biomolecular conformational dynamics. Curr Opin Struct Biol. 2014. https://doi.org/10.1016/j.sbi.2014.04.002.

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Baghel S, Cathcart H, O’Reilly NJ. Polymeric amorphous solid dispersions: a review of amorphization, crystallization, stabilization, solid-state characterization, and aqueous solubilization of biopharmaceutical classification system class II drugs. J Pharm Sci. 2016. https://doi.org/10.1016/j.xphs.2015.10.008.

    Article  PubMed  Google Scholar 

  10. 10.

    Gooneie A, Schuschnigg S, Holzer C. A review of multiscale computational methods in polymeric materials. Polymers. 2017. https://doi.org/10.3390/polym9010016.

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Valverde JR. Molecular modelling: principles and applications. Brief Bioinform. 2006. https://doi.org/10.1093/bib/2.2.199.

    Article  Google Scholar 

  12. 12.

    Rapaport DC, Blumberg RL, McKay SR, Christian W. The art of molecular dynamics simulation. Comput Phys. 2013. https://doi.org/10.1063/1.4822471.

    Article  Google Scholar 

  13. 13.

    Paquet E, Viktor HL. Computational methods for Ab initio molecular dynamics. Adv Chem. 2018. https://doi.org/10.1155/2018/9839641.

    Article  Google Scholar 

  14. 14.

    Trewin A. Molecular modelling for beginners. Chromatographia. 2010. https://doi.org/10.1365/s10337-009-1412-5.

    Article  Google Scholar 

  15. 15.

    Jahangirian M, Eldabi T, Naseer A, Stergioulas LK, Young T. Simulation in manufacturing and business: a review. Eur J Oper Res. 2010. https://doi.org/10.1016/j.ejor.2009.06.004.

    Article  Google Scholar 

  16. 16.

    Fredrickson GH. The theory of polymer dynamics. Curr Opin Solid State Mater Sci. 1996. https://doi.org/10.1016/S1359-0286(96)80106-9.

    Article  Google Scholar 

  17. 17.

    Cheng X, Ivanov I. Molecular dynamics. Methods Mol Biol. 2012. https://doi.org/10.1007/978-1-62703-050-2_11.

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Li Y, Abberton BC, Kröger M, Liu WK. Challenges in multiscale modeling of polymer dynamics. Polymers. 2013. https://doi.org/10.3390/polym5020751.

    Article  Google Scholar 

  19. 19.

    Heinecke A, Eckhardt W, Horsch M, Bungartz HJ. Molecular dynamics simulation. In: Supercomputing for molecular dynamics simulations. SpringerBriefs in Computer Science. Springer, Cham 2015; http://doi.org/10.1007/978-3-319-17148-7_2.

  20. 20.

    Raabe G. Molecular dynamics simulations. In: Molecular simulation studies on thermophysical properties. Molecular modeling and simulation (applications and perspectives). Springer, Singapore 2017; https://doi.org/10.1007/978-981-10-3545-6_4.

  21. 21.

    Yu L, Dean K, Li L. Polymer blends and composites from renewable resources. Prog Polym Sci. 2006. https://doi.org/10.1016/j.progpolymsci.2006.03.002.

    Article  Google Scholar 

  22. 22.

    Utracki LA, Wilkie CA. Polymer blends handbook. 2014; http://doi.org/10.1007/978-94-007-6064-6.

  23. 23.

    Manias E, Utracki LA. Thermodynamics of polymer blends. In: Polymer blends handbook. 2014; http://doi.org/10.1007/978-94-007-6064-6_4.

  24. 24.

    Sperling LH, Hu R (2014) Interpenetrating polymer networks. In: Polymer blends handbook. http://doi.org/10.1007/978-94-007-6064-6_8.

  25. 25.

    Xu K, Chen R, Wang C, et al. Organomontmorillonite-modified soybean oil-based polyurethane/epoxy resin interpenetrating polymer networks (IPNs). J Therm Anal Calorim. 2016;126:1253. https://doi.org/10.1007/s10973-016-5795-x.

    Article  CAS  Google Scholar 

  26. 26.

    Schiraldi A, Fessas D. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08166-z.

    Article  Google Scholar 

  27. 27.

    Khoshooei MA, Fazlollahi F, Maham Y, et al. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08022-0.

    Article  Google Scholar 

  28. 28.

    Łagowska B, Wacławska I, Sułowska J, et al. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08446-8.

    Article  Google Scholar 

  29. 29.

    Lipatov YS, Alekseeva TT. Phase-separated interpenetrating polymer networks. In: Phase-separated interpenetrating polymer networks. Advances in polymer science, vol 208. Springer, Berlin, 2007; http://doi.org/10.1007/12_2007_116.

  30. 30.

    Sperling LH. Interpenetrating polymer networks: an overview 2009; http://doi.org/10.1021/ba-1994-0239.ch001.

  31. 31.

    Shivashankar M, Mandal BK. A review on interpenetrating polymer network. Int J Pharm Pharm Sci. 2012;4(Suppl 5):1–7.

    CAS  Google Scholar 

  32. 32.

    Matricardi P, Di Meo C, Coviello T, Hennink WE, Alhaique F. Interpenetrating polymer networks polysaccharide hydrogels for drug delivery and tissue engineering. Adv Drug Deliv Rev. 2013. https://doi.org/10.1016/j.addr.2013.04.002.

    Article  PubMed  Google Scholar 

  33. 33.

    Dragan ES. Design and applications of interpenetrating polymer network hydrogels. A review. Chem Eng J. 2014. https://doi.org/10.1016/j.cej.2014.01.065.

    Article  Google Scholar 

  34. 34.

    Lohani A, Singh G, Bhattacharya SS, Verma A. Interpenetrating polymer networks as innovative drug delivery systems. J Drug Deliv. 2014. https://doi.org/10.1155/2014/583612.

    Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Ligon-Auer SC, Schwentenwein M, Gorsche C, Stampfl J, Liska R. Toughening of photo-curable polymer networks: a review. Polym Chem. 2016. https://doi.org/10.1039/c5py01631b.

    Article  Google Scholar 

  36. 36.

    Feig VR, Tran H, Lee M, Bao Z. Mechanically tunable conductive interpenetrating network hydrogels that mimic the elastic moduli of biological tissue. Nat Commun. 2018. https://doi.org/10.1038/s41467-018-05222-4.

    Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Rao S, Devi SNS, Johns A, Kalkornsurapranee E, Sham Aan M, Johns J. Mechanical and thermal properties of carbon black reinforced natural rubber/polyvinyl alcohol fully-interpenetrating polymer networks. J Vinyl Add Technol. 2018;24:E21–9. https://doi.org/10.1002/vnl.21560.

    Article  CAS  Google Scholar 

  38. 38.

    Kumar P, Choonara YE, du Toit LC, Pillay V. Advances in patented interpenetrating polymeric networks for biomedical applications. Pharm Patent Anal. 2018;7(3):99–101. https://doi.org/10.4155/ppa-2018-0007.

    Article  CAS  Google Scholar 

  39. 39.

    Sadakbayeva Z, Dušková-Smrčková M, Šturcová A, Pfleger J, Dušek K. Microstructured poly(2-hydroxyethyl methacrylate)/poly(glycerol monomethacrylate) interpenetrating network hydrogels: UV-scattering induced accelerated formation and tensile behavior. Eur Polym J. 2018;101:304–13. https://doi.org/10.1016/J.EURPOLYMJ.2018.02.035.

    Article  CAS  Google Scholar 

  40. 40.

    Sen S, Patil S, Argyropoulos DS. Thermal properties of lignin in copolymers, blends, and composites: a review. Green Chem. 2015;17(11):4862–87. https://doi.org/10.1039/C5GC01066G.

    Article  CAS  Google Scholar 

  41. 41.

    Liu Z, Zhang Y, Hu K, Xiao Y, Wang J, Zhou C, Lei J. Preparation and properties of polyethylene glycol based semi-interpenetrating polymer network as novel form-stable phase change materials for thermal energy storage. Energy Build. 2016;127:327–36. https://doi.org/10.1016/J.ENBUILD.2016.06.009.

    Article  Google Scholar 

  42. 42.

    Zanjanijam AR, Hakim S, Azizi H. Rheological, mechanical and thermal properties of the PA/PVB blends and their nanocomposites: structure-property relationships. Polym Test. 2018;66:48–63. https://doi.org/10.1016/J.POLYMERTESTING.2018.01.006.

    Article  CAS  Google Scholar 

  43. 43.

    Somsunan R, Mainoiy N. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08631-9.

    Article  Google Scholar 

  44. 44.

    Baatti A, Erchiqui F, Godard F, et al. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08497-x.

    Article  Google Scholar 

  45. 45.

    Wong WSY, Stachurski ZH, Nisbet DR, Tricoli A. Ultra-durable and transparent self-cleaning surfaces by large-scale self-assembly of hierarchical interpenetrated polymer networks. ACS Appl Mater Interfaces. 2016;8(21):13615–23. https://doi.org/10.1021/acsami.6b03414.

    Article  PubMed  CAS  Google Scholar 

  46. 46.

    Zhong C, Ke D, Wang L, Lu Y, Wang L. Bioactive interpenetrating polymer networks for improving the electrode/neural-tissue interface. Electrochem Commun. 2017;79:59–62. https://doi.org/10.1016/J.ELECOM.2017.04.015.

    Article  CAS  Google Scholar 

  47. 47.

    Park SR, Kang JH, Ahn DA, Suh MC. A cross-linkable hole transport material having improved mobility through a semi-interpenetrating polymer network approach for solution-processed green PHOLEDs. J Mater Chem C. 2018;6(29):7750–8. https://doi.org/10.1039/C8TC01435C.

    Article  CAS  Google Scholar 

  48. 48.

    Ren D, Chen L, Yuan Y, Li K, Xu M, Liu X. Designing and preparation of fiber-reinforced composites with enhanced interface adhesion. Polymers. 2018;10:1128. https://doi.org/10.3390/polym10101128.

    Article  PubMed Central  CAS  Google Scholar 

  49. 49.

    Haloi DJ, Koiry BP, Mandal P, et al. Synthesis and characterization of poly(2-ethylhexyl acrylate) prepared via atom transfer radical polymerization, reverse atom transfer radical polymerization and radical polymerization. J Chem Sci. 2013;125:791–7. https://doi.org/10.1007/s12039-013-0438-2.

    Article  CAS  Google Scholar 

  50. 50.

    Czech Z, Kowalczyk A, Kabatc J, Świderska J. Thermal stability of poly(2-ethylhexyl acrylates) used as plasticizers for medical application. Polym Bull. 2013;70:1911–8. https://doi.org/10.1007/s00289-012-0887-7.

    Article  CAS  Google Scholar 

  51. 51.

    Haloi DJ, Ata S, Singha NK, Jehnichen D, Voit P. Acrylic AB and ABA block copolymers based on poly(2-ethylhexyl acrylate) (PEHA) and poly(methyl methacrylate) (PMMA) via ATRP. Appl Mater Interfaces. 2012;4:4200–7. https://doi.org/10.1021/am300915j.

    Article  CAS  Google Scholar 

  52. 52.

    Wang G. Synthesis of poly(n-butyl acrylate) homopolymers by activators generated by electron transfer (AGET) ATRP using FeCl3 6H2O/succinic acid catalyst. Iran Polym J. 2011;20:931–8.

    CAS  Google Scholar 

  53. 53.

    Meng B, Deng JJ, Liu Q, Wu Z, Yang W. Transparent and ductile poly(lactic acid)/poly(butyl acrylate) (PBA) blends: structure and properties. Eur Polym J. 2012;48:127–35. https://doi.org/10.1016/j.eurpolymj.2011.10.009.

    Article  CAS  Google Scholar 

  54. 54.

    Derouiche Y, Koynov K, Dubois F, Douali R, Legrand C, Maschke U. Optical, electro-optical, and dielectric properties of acrylic tripropyleneglycol based polymer network systems including LCs. Mol Cryst Liq Cryst. 2012;561:124–35. https://doi.org/10.1080/15421406.2012.687149.

    Article  CAS  Google Scholar 

  55. 55.

    Bouchikhi N, Semdani F, Alachaher Bedjaoui L, Maschke U. Elaboration of side-chain liquid-crystalline elastomers and study of their swelling behavior in anisotropic solvents. Mol Cryst Liq Cryst. 2012;560:159–69. https://doi.org/10.1080/15421406.2012.663196.

    Article  CAS  Google Scholar 

  56. 56.

    Culgi BV, The Netherlands, 12.0.

  57. 57.

    Humphrey W, Dalke A, Schulten K. VMD-Visual molecular dynamics. J Mol Graphics. 1996;14:33–8.

    Article  CAS  Google Scholar 

  58. 58.

    Hsin J, Arkhipov A, Yin Y, Stone JE, Schulten K. Using VMD: an introductory tutorial. Curr Protoc Bioinform. 2008. https://doi.org/10.1002/0471250953.bi0507s24.

    Article  Google Scholar 

  59. 59.

    Mayo SL, Olafson BD, Goddard WA. DREIDING: a generic force field for molecular simulations. J Phys Chem. 1990;94(26):8897–909. https://doi.org/10.1021/j100389a010.

    Article  CAS  Google Scholar 

  60. 60.

    Fraaije JHG et al. Culgi manual 12.0.1. Culgi, Leiden, Netherlands.

  61. 61.

    Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR. Molecular dynamics with coupling to an external bath. J Chem Phys. 1984;81(8):3684–90. https://doi.org/10.1063/1.448118.

    Article  CAS  Google Scholar 

  62. 62.

    Sheppard D, Terrell R, Henkelman G. Optimization methods for finding minimum energy paths. J Chem Phys. 2008;128(13):134106. https://doi.org/10.1063/1.2841941.

    Article  PubMed  CAS  Google Scholar 

  63. 63.

    Metatla N, Soldera A. Computation of densities, bulk moduli and glass transition temperatures of vinylic polymers from atomistic simulation. Mol Simul. 2006. https://doi.org/10.1080/08927020601059901.

    Article  Google Scholar 

  64. 64.

    Soldera A, Metatla N. Glass transition of polymers: atomistic simulation versus experiments. Phys Rev E. 2006;74(6):061803. https://doi.org/10.1103/PhysRevE.74.061803.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the members of CULGI® for their continued support. This work was granted access to the HPC resources of UCI-UABT ‘Unité de Calcul Intensif’ of the University Abou bekr Belkaïd of Tlemcen financed by the DGRSDT ‘Direction Générale de la recherche Scientifique et du Développement Technologique.’

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kamel Boudraa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Boudraa, K., Bouchaour, T. & Maschke, U. Thermal analysis of interpenetrating polymer networks through molecular dynamics simulations: a comparison with experiments. J Therm Anal Calorim 140, 1845–1857 (2020). https://doi.org/10.1007/s10973-019-08898-y

Download citation

Keywords

  • Interpenetrating polymer network
  • Thermal analysis
  • Atomistic simulation
  • Glass transition