Skip to main content
Log in

Modeling of nanomaterial treatment through a porous space including magnetic forces

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In present article, influence of magnetic forces on migration of nanomaterial through a permeable zone via an innovative method is investigated. The porous cavity packed with CuO-water nanofluid, a magneto-hydrodynamic effect is imposed, and the numerical simulation method is CVFEM. The investigations include various radiation terms, Hartmann and Rayleigh numbers and the nanomaterial shape factor and their corresponding effects on thermal properties of nanomaterial. The results reveal that Nusselt number is in direct relation with radiation term, convective mechanism becomes stronger with improve of shape effect, and temperature gradient goes up as the Hartmann number drops or Rayleigh number augments. Finally, established on derived outputs, a precise formula for Nuave as a function of the aforementioned parameters is developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sheikholeslami M, Arabkoohsar A, Jafaryar M. Impact of a helical-twisting device on nanofluid thermal hydraulic performance of a tube. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08683-x.

    Article  Google Scholar 

  2. Seyednezhad M, Sheikholeslami M, Ali JA, Shafee A, Nguyen TK. Nanoparticles for water desalination in solar heat exchanger; review. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08634-6.

    Article  Google Scholar 

  3. Sheikholeslami M, Sheremet MA, Shafee A, Li Z. CVFEM approach for EHD flow of nanofluid through porous medium within a wavy chamber under the impacts of radiation and moving walls. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08235-3.

    Article  Google Scholar 

  4. Sarafraz MM, Arjomandi M. Thermal performance analysis of a microchannel heat sink cooling with copper oxide-indium (CuO/In) nano-suspensions at high-temperatures. Appl Therm Eng. 2018;137:700–9.

    Article  CAS  Google Scholar 

  5. Farshad SA, Sheikholeslami M. Simulation of exergy loss of nanomaterial through a solar heat exchanger with insertion of multi-channel twisted tape. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08156-1.

    Article  Google Scholar 

  6. Sheikholeslami M, Rezaeianjouybari B, Darzi M, Shafee A, Li Z, Nguyen TK. Application of nano-refrigerant for boiling heat transfer enhancement employing an experimental study. Int J Heat Mass Transf. 2019;141:974–80.

    Article  CAS  Google Scholar 

  7. Qin Y, He H, Ou X, Bao T. Experimental study on darkening water-rich mud tailings for accelerating desiccation. J Clean Prod. 2019. https://doi.org/10.1016/j.jclepro.2019.118235.

    Article  Google Scholar 

  8. Miroshnichenko IV, Sheremet MA, Oztop HF, Abu-Hamdeh N. Natural convection of Al2O3/H2O nanofluid in an open inclined cavity with a heat-generating element. Int J Heat Mass Transf. 2018;126:184–91.

    Article  CAS  Google Scholar 

  9. Zhu GP, Yao J, Sun H, Zhang M, Xie MJ, Sun ZX, Lu T. The numerical simulation of thermal recovery based on hydraulic fracture heating technology in shale gas reservoir. J Nat Gas Sci Eng. 2016;28:305–16. https://doi.org/10.1016/j.jngse.2015.11.051.

    Article  Google Scholar 

  10. Mohamadi-Baghmolaei M, Azin R, Osfuri S, Mohamadi-Baghmolaei R, Zarei Z. Prediction of gas compressibility factor using intelligent models. Nat Gas Ind B. 2015;2:283–94. https://doi.org/10.1016/j.ngib.2015.09.001.

    Article  Google Scholar 

  11. Usman M, Soomro FA, Ul Haq R, Wang W, Defterli O. Thermal and velocity slip effects on Casson nanofluid flow over an inclined permeable stretching cylinder via collocation method. Int J Heat Mass Transf. 2018;122:1255–63.

    Article  CAS  Google Scholar 

  12. Gibanov NS, Sheremet MA, Oztop HF, Abu-Hamdeh N. Mixed convection with entropy generation of nanofluid in a lid-driven cavity under the effects of a heat-conducting solid wall and vertical temperature gradient. Eur J Mech B/Fluids. 2018;70:148–59.

    Article  Google Scholar 

  13. Sheikholeslami M, Ul Haq R, Shafee A, Li Z, Elaraki YG, Tlili I. Heat transfer simulation of heat storage unit with nanoparticles and fins through a heat exchanger. Int J Heat Mass Transf. 2019;135:470–8.

    Article  CAS  Google Scholar 

  14. Qin Yinghong, Hiller Jacob E, Meng Demiao. Linearity between pavement thermophysical properties and surface temperatures. J Mater Civ Eng. 2019. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002890.

    Article  Google Scholar 

  15. Sheikholeslami M, Jafaryar M. Ahmad Shafee, Zhixiong Li, Rizwan-ul Haq, Heat transfer of nanoparticles employing innovative turbulator considering entropy generation. Int J Heat Mass Transf. 2019;136:1233–40.

    Article  CAS  Google Scholar 

  16. Qin Y, Luo J, Chen Z, Mei G, Yan L-E. Measuring the albedo of limited-extent targets without the aid of known-albedo masks. Sol Energy. 2018;171:971–6.

    Article  Google Scholar 

  17. Sheikholeslami M, Keramati H, Shafee A, Li Z, Alawad OA, Tlili I. Nanofluid MHD forced convection heat transfer around the elliptic obstacle inside a permeable lid drive 3D enclosure considering lattice Boltzmann method. Physica A. 2019;523:87–104.

    Article  CAS  Google Scholar 

  18. Gao W, Yan L, Shi L. Generalized Zagreb index of polyomino chains and nanotubes. Optoelectron Adv Mater Rapid Commun. 2017;11(1–2):119–24.

    Google Scholar 

  19. J. Rafelski, The Lorentz force. In: Relativity matters. Springer, Cham, 2017.

  20. Khan M, Irfan M, Ahmad L, Khan WA. Simultaneous investigation of MHD and convective phenomena on time-dependent flow of Carreau nanofluid with variable properties: dual solutions. Phys Lett A. 2018;382:2334–42.

    Article  CAS  Google Scholar 

  21. Ul Haq R, Nadeem S, Khan ZH, Noor NFM. Convective heat transfer in MHD slip flow over a stretching surface in the presence of carbon nanotubes. Phys B Condens Matter. 2015;457:40–7.

    Article  CAS  Google Scholar 

  22. Zhao G, Wang Z, Jian Y. Heat transfer of the MHD nanofluid in porous microtubes under the electrokinetic effects. Int J Heat Mass Transf. 2019;130:821–30.

    Article  CAS  Google Scholar 

  23. Sheikholeslami M, Ul Haq R, Shafee A, Li Z. Heat transfer behavior of Nanoparticle enhanced PCM solidification through an enclosure with V shaped fins. Int J Heat Mass Transf. 2019;130:1322–42.

    Article  CAS  Google Scholar 

  24. Kandasamy R, Dharmalingam R, SivagnanaPrabhu KK. Thermal and solutal stratification on MHD nanofluid flow over a porous vertical plate. Alex Eng J. 2018;57:121–30.

    Article  Google Scholar 

  25. Liu Qun, Jiang Daqing, Hayat Tasawar, Alsaedi Ahmed. Long-time behavior of a stochastic logistic equation with distributed delay and nonlinear perturbation. Phys A. 2018;508:289–304.

    Article  Google Scholar 

  26. Gao W, Wang WF. The eccentric connectivity polynomial of two classes of nanotubes. Chaos Solitons Fract. 2016;89:290–4.

    Article  Google Scholar 

  27. Qin Y, He Y, Hiller JE, Mei G. A new water-retaining paver block for reducing runoff and cooling pavement. J Clean Prod. 2018;199:948–56.

    Article  Google Scholar 

  28. Sheikholeslami M. Omid Mahian, Enhancement of PCM solidification using inorganic nanoparticles and an external magnetic field with application in energy storage systems. J Clean Prod. 2019;215:963–77.

    Article  CAS  Google Scholar 

  29. Sheikholeslami M, Jafaryar M, Ali JA, Hamad SM, Divsalar A, Shafee A, Nguyen-Thoi T, Li Z. Simulation of turbulent flow of nanofluid due to existence of new effective turbulator involving entropy generation. J Mol Liq. 2019;291:111283.

    Article  CAS  Google Scholar 

  30. Qin Y, Zhao Y, Chen X, Wang L, Li F, Bao T. Moist curing increases the solar reflectance of concrete. Constr Build Mater. 2019;215:114–8.

    Article  Google Scholar 

  31. Sheikholeslami M. Numerical approach for MHD Al2O3-water nanofluid transportation inside a permeable medium using innovative computer method. Comput Methods Appl Mech Eng. 2019;344:306–18.

    Article  Google Scholar 

  32. Siddheshwar PG, Vanishree RK. Lorenz and Ginzburg-Landau equations for thermal convection in a high-porosity medium with heat source. Ain Shams Eng J. 2018;9:1547–55.

    Article  Google Scholar 

  33. Sheikholeslami M, Shehzad SA, Li Z. Water based nanofluid free convection heat transfer in a three dimensional porous cavity with hot sphere obstacle in existence of Lorenz forces. Int J Heat Mass Transf. 2018;125:375–86.

    Article  CAS  Google Scholar 

  34. Sheikholeslami M. New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media. Comput Methods Appl Mech Eng. 2019;344:319–33.

    Article  Google Scholar 

  35. Sheikholeslami Mohsen, Arabkoohsar Ahmad, Khan Ilyas, Shafee Ahmad, Li Zhixiong. Impact of Lorentz forces on Fe3O4–water ferrofluid entropy and exergy treatment within a permeable semi annulus. J Clean Prod. 2019;221:885–98.

    Article  CAS  Google Scholar 

  36. Sharif MAR, Mohammad TR. Natural convection in cavities with constant flux heating at the bottom wall and isothermal cooling from the sidewalls. Int J Therm Sci. 2005;44:865–78.

    Article  Google Scholar 

  37. Rudraiah N, Barron RM, Venkatachalappa M, Subbaraya CK. Effect of a magnetic field on free convection in a rectangular enclosure. Int J Eng Sci. 1995;33:1075–84.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Houman Babazadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheikholeslami, M., Arabkoohsar, A. & Babazadeh, H. Modeling of nanomaterial treatment through a porous space including magnetic forces. J Therm Anal Calorim 140, 825–834 (2020). https://doi.org/10.1007/s10973-019-08878-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08878-2

Keywords

Navigation