Skip to main content
Log in

Thermal conductivity prediction of nanofluids containing CuO nanoparticles by using correlation and artificial neural network

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Nanofluids are employed in different thermal devices due to their enhanced thermophysical features which lead to noticeable heat transfer augmentation. One of the major reasons of the heat transfer improvement by using the nanofluids is their increased thermal conductivity. Several methods have been applied to estimate this property of nanofluids such as correlations and artificial neural networks (ANNs). In the present paper, group method of data handling (GMDH) and a mathematical correlation are proposed for forecasting the thermal conductivity of nanofluids containing CuO nanoparticles. The inputs of the both models are the base fluids’ thermal conductivities, concentration, temperature and nanoparticle dimension. Comparison of the forecasted data by these two approaches revealed more favorable performance of GMDH. The values of R-squared in the cases where polynomial and ANN were utilized were 0.9862 and 0.9996, respectively. Moreover, the average absolute relative deviation values were 5.25% and 0.881% for the indicated methods, respectively. According to these statistical values, it is concluded that employing the ANN-based regression leads to more confident model for forecasting the TC of the nanofluids containing CuO nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

\(a_{\text{i}}\) :

\(i\)th coefficient

\(x\) :

Input vector

\(x_{1}\) :

Temperature of nanofluid (°C)

\(x_{2}\) :

Volume fraction of solid phase (%)

\(x_{3}\) :

Size of particles (nm)

\(x_{4}\) :

Thermal conductivity of the base fluid (W m−1 K−1)

\(y\) :

Output vector

\(y_{\text{i}}^{\text{experimental}}\) :

Measured data in experiment

\(y_{\text{i}}^{\text{predicted}}\) :

Predicted value by the model

AARD:

Average absolute relative deviation

ANN:

Artificial neural network

GMDH:

Group method of data handling

MSE:

Mean square error

RD:

Relative deviation

References

  1. Mahian O, Kianifar A, Heris SZ, Wen D, Sahin AZ, Wongwises S. Nanofluids effects on the evaporation rate in a solar still equipped with a heat exchanger. Nano Energy. 2017;36:134–55. https://doi.org/10.1016/J.NANOEN.2017.04.025.

    Article  CAS  Google Scholar 

  2. Ramezanizadeh M, Alhuyi Nazari M, Ahmadi MH, Açıkkalp E. Application of nanofluids in thermosyphons: a review. J Mol Liq. 2018;272:395–402. https://doi.org/10.1016/J.MOLLIQ.2018.09.101.

    Article  CAS  Google Scholar 

  3. Mahian O, Kianifar A, Kleinstreuer C, Al-Nimr MA, Pop I, Sahin AZ, et al. A review of entropy generation in nanofluid flow. Int J Heat Mass Transf. 2013;65:514–32. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2013.06.010.

    Article  CAS  Google Scholar 

  4. Karimipour A, D’Orazio A, Shadloo MS. The effects of different nano particles of Al2O3 and Ag on the MHD nano fluid flow and heat transfer in a microchannel including slip velocity and temperature jump. Phys E Low-Dimens Syst Nanostruct. 2017;86:146–53. https://doi.org/10.1016/J.PHYSE.2016.10.015.

    Article  CAS  Google Scholar 

  5. Gandomkar A, Saidi MH, Shafii MB, Vandadi M, Kalan K. Visualization and comparative investigations of pulsating ferro-fluid heat. Appl Therm Eng. 2017. https://doi.org/10.1016/j.applthermaleng.2017.01.068.

    Article  Google Scholar 

  6. Alhuyi Nazari M, Ahmadi MH, Ghasempour R, Shafii MB. How to improve the thermal performance of pulsating heat pipes: a review on working fluid. Renew Sustain Energy Rev. 2018;91:630–8. https://doi.org/10.1016/j.rser.2018.04.042.

    Article  CAS  Google Scholar 

  7. Safaei MR, Safdari Shadloo M, Goodarzi MS, Hadjadj A, Goshayeshi HR, Afrand M, et al. A survey on experimental and numerical studies of convection heat transfer of nanofluids inside closed conduits. Adv Mech Eng. 2016;8:168781401667356. https://doi.org/10.1177/1687814016673569.

    Article  CAS  Google Scholar 

  8. Ramezanizadeh M, Alhuyi Nazari M, Ahmadi MH, Chau K. Experimental and numerical analysis of a nanofluidic thermosyphon heat exchanger. Eng Appl Comput Fluid Mech. 2019;13:40–7. https://doi.org/10.1080/19942060.2018.1518272.

    Article  Google Scholar 

  9. Nazari MA, Ghasempour R, Ahmadi MH, Heydarian G, Shafii MB. Experimental investigation of graphene oxide nanofluid on heat transfer enhancement of pulsating heat pipe. Int Commun Heat Mass Transf. 2018;91:90–4. https://doi.org/10.1016/j.icheatmasstransfer.2017.12.006.

    Article  CAS  Google Scholar 

  10. Baghban A, Kahani M, Nazari MA, Ahmadi MH, Yan W-M. Sensitivity analysis and application of machine learning methods to predict the heat transfer performance of CNT/water nanofluid flows through coils. Int J Heat Mass Transf. 2019;128:825–35. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2018.09.041.

    Article  CAS  Google Scholar 

  11. Hemmat Esfe M, Saedodin S, Mahian O, Wongwises S. Heat transfer characteristics and pressure drop of COOH-functionalized DWCNTs/water nanofluid in turbulent flow at low concentrations. Int J Heat Mass Transf. 2014;73:186–94. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2014.01.069.

    Article  Google Scholar 

  12. Safaei M, Ahmadi G, Goodarzi M, Safdari Shadloo M, Goshayeshi H, Dahari M, et al. Heat transfer and pressure drop in fully developed turbulent flows of graphene nanoplatelets–silver/water nanofluids. Fluids. 2016;1:20. https://doi.org/10.3390/fluids1030020.

    Article  CAS  Google Scholar 

  13. Shirzad M, Ajarostaghi SSM, Delavar MA, Sedighi K. Improve the thermal performance of the pillow plate heat exchanger by using nanofluid: numerical simulation. Adv Powder Technol. 2019;30:1356–65. https://doi.org/10.1016/J.APT.2019.04.011.

    Article  CAS  Google Scholar 

  14. Ramezanizadeh M, Alhuyi Nazari M, Hossein Ahmadi M, Chen L. A review on the approaches applied for cooling fuel cells. Int J Heat Mass Transf. 2019;139:517–25. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2019.05.032.

    Article  CAS  Google Scholar 

  15. Salavati Meibodi S, Kianifar A, Niazmand H, Mahian O, Wongwises S. Experimental investigation on the thermal efficiency and performance characteristics of a flat plate solar collector using SiO2/EG–water nanofluids. Int Commun Heat Mass Transf. 2015;65:71–5. https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2015.02.011.

    Article  CAS  Google Scholar 

  16. Toghyani S, Afshari E, Baniasadi E, Shadloo MS. Energy and exergy analyses of a nanofluid based solar cooling and hydrogen production combined system. Renew Energy. 2019;141:1013–25. https://doi.org/10.1016/J.RENENE.2019.04.073.

    Article  CAS  Google Scholar 

  17. Ahmadi MH, Ramezanizadeh M, Nazari MA, Lorenzini G, Kumar R, Jilte R. Applications of nanofluids in geothermal: a review. Math Model Eng Probl. 2018;5:281–5. https://doi.org/10.18280/mmep.050402.

    Article  Google Scholar 

  18. Kasaeian A, Eshghi AT, Sameti M. A review on the applications of nanofluids in solar energy systems. Renew Sustain Energy Rev. 2015;43:584–98. https://doi.org/10.1016/J.RSER.2014.11.020.

    Article  CAS  Google Scholar 

  19. Natarajan E, Sathish R. Role of nanofluids in solar water heater. Int J Adv Manuf Technol. 2009. https://doi.org/10.1007/s00170-008-1876-8.

    Article  Google Scholar 

  20. Ebaid MSY, Ghrair AM, Al-Busoul M. Experimental investigation of cooling photovoltaic (PV) panels using (TiO2) nanofluid in water–polyethylene glycol mixture and (Al2O3) nanofluid in water–cetyltrimethylammonium bromide mixture. Energy Convers Manag. 2018;155:324–43. https://doi.org/10.1016/J.ENCONMAN.2017.10.074.

    Article  CAS  Google Scholar 

  21. Meibodi SS, Kianifar A, Mahian O, Wongwises S. Second law analysis of a nanofluid-based solar collector using experimental data. J Therm Anal Calorim. 2016;126:617–25. https://doi.org/10.1007/s10973-016-5522-7.

    Article  CAS  Google Scholar 

  22. Ehyaei MA, Ahmadi A, Assad MEH, Hachicha AA, Said Z. Energy, exergy and economic analyses for the selection of working fluid and metal oxide nanofluids in a parabolic trough collector. Sol Energy. 2019;187:175–84. https://doi.org/10.1016/J.SOLENER.2019.05.046.

    Article  CAS  Google Scholar 

  23. Said Z, Rahman SMA, El Haj Assad M, Alami AH. Heat transfer enhancement and life cycle analysis of a shell-and-tube heat exchanger using stable CuO/water nanofluid. Sustain Energy Technol Assess. 2019;31:306–17. https://doi.org/10.1016/J.SETA.2018.12.020.

    Article  Google Scholar 

  24. Said Z, El Haj Assad M, Hachicha AA, Bellos E, Abdelkareem MA, Alazaizeh DZ, et al. Enhancing the performance of automotive radiators using nanofluids. Renew Sustain Energy Rev. 2019;112:183–94. https://doi.org/10.1016/J.RSER.2019.05.052.

    Article  Google Scholar 

  25. Ahmadi MH, Mirlohi A, Alhuyi Nazari M, Ghasempour R. A review of thermal conductivity of various nanofluids. J Mol Liq. 2018. https://doi.org/10.1016/j.molliq.2018.05.124.

    Article  Google Scholar 

  26. Hemmat Esfe M, Saedodin S, Bahiraei M, Toghraie D, Mahian O, Wongwises S. Thermal conductivity modeling of MgO/EG nanofluids using experimental data and artificial neural network. J Therm Anal Calorim. 2014;118:287–94. https://doi.org/10.1007/s10973-014-4002-1.

    Article  CAS  Google Scholar 

  27. Hemmat Esfe M, Saedodin S, Mahian O, Wongwises S. Thermal conductivity of Al2O3/water nanofluids. J Therm Anal Calorim. 2014;117:675–81. https://doi.org/10.1007/s10973-014-3771-x.

    Article  CAS  Google Scholar 

  28. Ramezanizadeh M, Alhuyi Nazari M, Ahmadi MH, Lorenzini G, Pop I. A review on the applications of intelligence methods in predicting thermal conductivity of nanofluids. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08154-3.

    Article  Google Scholar 

  29. Ahmadi M-A, Ahmadi MH, Fahim Alavi M, Nazemzadegan MR, Ghasempour R, Shamshirband S. Determination of thermal conductivity ratio of CuO/ethylene glycol nanofluid by connectionist approach. J Taiwan Inst Chem Eng. 2018. https://doi.org/10.1016/J.JTICE.2018.06.003.

    Article  Google Scholar 

  30. Ahmadi MH, Alhuyi Nazari M, Ghasempour R, Madah H, Shafii MB, Ahmadi MA. Thermal conductivity ratio prediction of Al2O3/water nanofluid by applying connectionist methods. Colloids Surf A Physicochem Eng Asp. 2018. https://doi.org/10.1016/j.colsurfa.2018.01.030.

    Article  Google Scholar 

  31. Ahmadi MH, Hajizadeh F, Rahimzadeh M, Shafii MB, Chamkha AJ. Application GMDH artificial neural network for modeling of Al2O3/water and Al2O3/ethylene glycol thermal conductivity. Int J Heat Technol. 2018;36:773–82.

    Article  Google Scholar 

  32. Sepyani K, Afrand M, Hemmat Esfe M. An experimental evaluation of the effect of ZnO nanoparticles on the rheological behavior of engine oil. J Mol Liq. 2017;236:198–204. https://doi.org/10.1016/J.MOLLIQ.2017.04.016.

    Article  CAS  Google Scholar 

  33. Ahmadi Nadooshan A, Hemmat Esfe M, Afrand M. Evaluation of rheological behavior of 10W40 lubricant containing hybrid nano-material by measuring dynamic viscosity. Phys E Low-Dimens Syst Nanostruct. 2017;92:47–54. https://doi.org/10.1016/J.PHYSE.2017.05.011.

    Article  CAS  Google Scholar 

  34. Zhang W, Maleki A, Rosen MA. A heuristic-based approach for optimizing a small independent solar and wind hybrid power scheme incorporating load forecasting. J Clean Prod. 2019. https://doi.org/10.1016/J.JCLEPRO.2019.117920.

    Article  Google Scholar 

  35. Maleki A, Khajeh MG, Rosen MA. Two heuristic approaches for the optimization of grid-connected hybrid solar–hydrogen systems to supply residential thermal and electrical loads. Sustain Cities Soc. 2017;34:278–92. https://doi.org/10.1016/J.SCS.2017.06.023.

    Article  Google Scholar 

  36. Maleki A, Hajinezhad A, Rosen MA. Modeling and optimal design of an off-grid hybrid system for electricity generation using various biodiesel fuels: a case study for Davarzan, Iran. Biofuels. 2016;7:699–712. https://doi.org/10.1080/17597269.2016.1192443.

    Article  CAS  Google Scholar 

  37. Malekan M, Khosravi A, Goshayeshi HR, Assad MEH, Garcia Pabon JJ. Thermal resistance modeling of oscillating heat pipes for nanofluids by artificial intelligence approach. J Heat Transf. 2019. https://doi.org/10.1115/1.4043569.

    Article  Google Scholar 

  38. Maleki A, Khajeh MG, Rosen MA. Weather forecasting for optimization of a hybrid solar-wind–powered reverse osmosis water desalination system using a novel optimizer approach. Energy. 2016;114:1120–34. https://doi.org/10.1016/J.ENERGY.2016.06.134.

    Article  Google Scholar 

  39. Gholipour Khajeh M, Maleki A, Rosen MA, Ahmadi MH. Electricity price forecasting using neural networks with an improved iterative training algorithm. Int J Ambient Energy. 2018;39:147–58. https://doi.org/10.1080/01430750.2016.1269674.

    Article  CAS  Google Scholar 

  40. Ahmadi Nadooshan A, Hemmat Esfe M, Afrand M. Prediction of rheological behavior of SiO2-MWCNTs/10W40 hybrid nanolubricant by designing neural network. J Therm Anal Calorim. 2018;131:2741–8. https://doi.org/10.1007/s10973-017-6688-3.

    Article  CAS  Google Scholar 

  41. Pakatchian MR, Saeidi H, Ziamolki A. CFD-based blade shape optimization of MGT-70(3)axial flow compressor. Int J Numer Methods Heat Fluid Flow. 2019. https://doi.org/10.1108/HFF-10-2018-0603.

    Article  Google Scholar 

  42. Ahmadi MH, Tatar A, Alhuyi Nazari M, Ghasempour R, Chamkha AJ, Yan W-M. Applicability of connectionist methods to predict thermal resistance of pulsating heat pipes with ethanol by using neural networks. Int J Heat Mass Transf. 2018. https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.085.

    Article  Google Scholar 

  43. Ahmadi MH, Sadeghzadeh M, Raffiee AH, Chau K. Applying GMDH neural network to estimate the thermal resistance and thermal conductivity of pulsating heat pipes. Eng Appl Comput Fluid Mech. 2019;13:327–36. https://doi.org/10.1080/19942060.2019.1582109.

    Article  Google Scholar 

  44. Zhang W, Maleki A, Rosen MA, Liu J. Sizing a stand-alone solar-wind-hydrogen energy system using weather forecasting and a hybrid search optimization algorithm. Energy Convers Manag. 2019;180:609–21. https://doi.org/10.1016/J.ENCONMAN.2018.08.102.

    Article  Google Scholar 

  45. Rezaei MH, Sadeghzadeh M, Alhuyi Nazari M, Ahmadi MH, Astaraei FR. Applying GMDH artificial neural network in modeling CO2 emissions in four nordic countries. Int J Low-Carbon Technol. 2018;13:266–71. https://doi.org/10.1093/ijlct/cty026.

    Article  CAS  Google Scholar 

  46. Mohamadian F, Eftekhar L, Haghighi Bardineh Y. Applying GMDH artificial neural network to predict dynamic viscosity of an antimicrobial nanofluid. Nanomed J. 2018;5:217–21. https://doi.org/10.22038/NMJ.2018.05.00005.

    Article  CAS  Google Scholar 

  47. Hemmat Esfe M, Bahiraei M, Hajmohammad MH, Afrand M. Rheological characteristics of MgO/oil nanolubricants: experimental study and neural network modeling. Int Commun Heat Mass Transf. 2017;86:245–52. https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2017.05.017.

    Article  CAS  Google Scholar 

  48. Ahmadi MH, Ahmadi MA, Nazari MA, Mahian O, Ghasempour R. A proposed model to predict thermal conductivity ratio of Al2O3/EG nanofluid by applying least squares support vector machine (LSSVM) and genetic algorithm as a connectionist approach. J Therm Anal Calorim. 2019;135:271–81. https://doi.org/10.1007/s10973-018-7035-z.

    Article  CAS  Google Scholar 

  49. Zendehboudi A, Saidur R, Mahbubul IM, Hosseini SH. Data-driven methods for estimating the effective thermal conductivity of nanofluids: a comprehensive review. Int J Heat Mass Transf. 2019;131:1211–31. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2018.11.053.

    Article  CAS  Google Scholar 

  50. Pham DT, Liu X. Modelling and prediction using GMDH networks of Adalines with nonlinear preprocessors. Int J Syst Sci. 1994;25:1743–59. https://doi.org/10.1080/00207729408949310.

    Article  Google Scholar 

  51. Ramezanizadeh M, Alhuyi Nazari M. Modeling thermal conductivity of Ag/water nanofluid by applying a mathematical correlation and artificial neural network. Int J Low-Carbon Technol. 2019. https://doi.org/10.1093/ijlct/ctz030.

    Article  Google Scholar 

  52. Zoqi M, Ghamgosar M, Ganji M, Fallahi S. Application of GMDH and genetic algorithm in fraction in biogas from landfill modeling. J Environ Sci Technol. 2016;18:1–12.

    Google Scholar 

  53. Ahmadi MH, Ahmadi MA, Mehrpooya M, Rosen MA. Using GMDH neural networks to model the power and torque of a stirling engine. Sustainability. 2015;7:2243–55. https://doi.org/10.3390/su7022243.

    Article  Google Scholar 

  54. Pourkiaei SM, Ahmadi MH, Hasheminejad SM. Modeling and experimental verification of a 25 W fabricated PEM fuel cell by parametric and GMDH-type neural network. Mech Ind. 2016;17:105. https://doi.org/10.1051/meca/2015050.

    Article  CAS  Google Scholar 

  55. Ramezanizadeh M, Ahmadi MA, Ahmadi MH, Alhuyi Nazari M. Rigorous smart model for predicting dynamic viscosity of Al2O3/water nanofluid. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7916-1.

    Article  Google Scholar 

  56. Ramezanizadeh M, Ahmadi MH, Nazari MA, Sadeghzadeh M, Chen L. A review on the utilized machine learning approaches for modeling the dynamic viscosity of nanofluids. Renew Sustain Energy Rev. 2019;114:109345. https://doi.org/10.1016/J.RSER.2019.109345.

    Article  CAS  Google Scholar 

  57. Hemmat Esfe M, Motahari K, Sanatizadeh E, Afrand M, Rostamian H, Reza Hassani Ahangar M. Estimation of thermal conductivity of CNTs-water in low temperature by artificial neural network and correlation. Int Commun Heat Mass Transf. 2016;76:376–81. https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2015.12.012.

    Article  CAS  Google Scholar 

  58. Adhami Dehkordi R, Hemmat Esfe M, Afrand M. Effects of functionalized single walled carbon nanotubes on thermal performance of antifreeze: an experimental study on thermal conductivity. Appl Therm Eng. 2017;120:358–66. https://doi.org/10.1016/J.APPLTHERMALENG.2017.04.009.

    Article  CAS  Google Scholar 

  59. Asadi A, Asadi M, Rezaniakolaei A, Rosendahl LA, Afrand M, Wongwises S. Heat transfer efficiency of Al2O3-MWCNT/thermal oil hybrid nanofluid as a cooling fluid in thermal and energy management applications: an experimental and theoretical investigation. Int J Heat Mass Transf. 2018;117:474–86. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2017.10.036.

    Article  CAS  Google Scholar 

  60. Agarwal R, Verma K, Agrawal NK, Duchaniya RK, Singh R. Synthesis, characterization, thermal conductivity and sensitivity of CuO nanofluids. Appl Therm Eng. 2016;102:1024–36. https://doi.org/10.1016/j.applthermaleng.2016.04.051.

    Article  CAS  Google Scholar 

  61. Liu M-S, Lin MC-C, Huang I-T, Wang C-C. Enhancement of thermal conductivity with CuO for nanofluids. Chem Eng Technol. 2006;29:72–7. https://doi.org/10.1002/ceat.200500184.

    Article  CAS  Google Scholar 

  62. Lee S, Choi SU-S, Li S, Eastman JA. Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transf. 1999;121:280. https://doi.org/10.1115/1.2825978.

    Article  CAS  Google Scholar 

  63. Wang X, Xu X, Choi SU S. Thermal Conductivity of nanoparticle—fluid mixture. J Thermophys Heat Transf. 1999;13:474–80. https://doi.org/10.2514/2.6486.

    Article  CAS  Google Scholar 

  64. Liu M, Lin M, Wang C. Enhancements of thermal conductivities with Cu, CuO, and carbon nanotube nanofluids and application of MWNT/water nanofluid on a water chiller system. Nanoscale Res Lett. 2011;6:297. https://doi.org/10.1186/1556-276X-6-297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Das SK, Putra N, Thiesen P, Roetzel W. Temperature dependence of thermal conductivity enhancement for nanofluids. J Heat Transfer. 2003;125:567. https://doi.org/10.1115/1.1571080.

    Article  CAS  Google Scholar 

  66. Mintsa HA, Roy G, Nguyen CT, Doucet D. New temperature dependent thermal conductivity data for water-based nanofluids. Int J Therm Sci. 2009;48:363–71. https://doi.org/10.1016/J.IJTHERMALSCI.2008.03.009.

    Article  CAS  Google Scholar 

  67. Khedkar RS, Sonawane SS, Wasewar KL. Influence of CuO nanoparticles in enhancing the thermal conductivity of water and monoethylene glycol based nanofluids. Int Commun Heat Mass Transf. 2012;39:665–9. https://doi.org/10.1016/j.icheatmasstransfer.2012.03.012.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akbar Maleki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$\begin{aligned} N156 & = 0.0638187 + N250*2.30293 \\ & \quad + N250 * N264*23.5634 - \left( {N250} \right)^{2} *13.7886 \\ & \quad - N264*1.68318 - \left( {N264} \right)^{2} *9.33539 \\ N264 & = 0.0432462 + N377*0.0323191 \\ & \quad + N377*N315*0.403573 + N315*0.482274 \\ & \quad + \left( {N315} \right)^{2} *0.363301 \\ N315 & = - 0.806049 + N345*0.801919 \\ & \quad + N345*N380*0.592981 - \left( {N345} \right)^{2} *0.0493165 \\ & \quad + N380*3.74782 - \left( {N380} \right)^{2} *4.28298 \\ N250 & = - 0.00466728 - N335*0.446895 \\ & \quad - N335*N357*27.6001 + \left( {N335} \right)^{2} *15.9285 \\ & \quad + N357*1.43754 + (N357)^{2} *11.6728 \\ N323 & = 0.00163454 - N350*5.08638 \\ & \quad - N350*N353*32.6077 + \left( {N350} \right)^{2} *32.5894 \\ & \quad + N353*6.08958 \\ N350 & = 0.293485 - \sqrt[3]{{x_{4} }} *1.64301 + \left( {\sqrt[3]{{x_{4} }}} \right)^{2} *2.37782 \\ & \quad + N377*0.182398 \\ N60 & = 0.0214562 - N197*N77*4.09698 \\ & \quad + \left( {N197} \right)^{2} *2.28313 + N77*0.854643 \\ & \quad + \left( {N77} \right)^{2} *1.96742 \\ N77 & = - 0.0235764 - N332*0.243521 - N332*N185*54.0984 \\ & \quad + (N332)^{2} *26.1746 + N185*1.40135 \\ & \quad + \left( {N185} \right)^{2} *27.7079 \\ N185 & = 0.000925156 + N266*0.717883 + N266*N284*9.61885 \\ & \quad - \left( {N266} \right)^{2} *5.14743 + N284*0.272103 - \left( {N284} \right)^{2} *4.43229 \\ N284 & = 0.0131173 + \sqrt[3]{{x_{2} }}*0.0105856 + \sqrt[3]{{x_{2} }}*N320*0.0680691 \\ & \quad + N320*0.782995 + \left( {N320} \right)^{2} *0.140752 \\ N320 & = - 1.18285 + \sqrt[3]{{x_{3} }}*0.809801 + \sqrt[3]{{x_{3} }}*N334*0.122827 \\ & \quad - \left( {\sqrt[3]{{x_{3} }}} \right)^{2} *0.13057 + N334*0.458137 + \left( {N334} \right)^{2} *0.0931282 \\ N266 & = 0.740175 - \sqrt[3]{{x_{4} }}*4.94909 - \sqrt[3]{{x_{4} }}*N335*14.4033 \\ & \quad + \left( {\sqrt[3]{{x_{4} }}} \right)^{2} *7.61967 + N335*6.04715 + \left( {N335} \right)^{2} *6.09104 \\ N335 & = - 0.878954 + N356*1.16337 - N356*N380*0.405506 \\ & \quad + \left( {N356} \right)^{2} *0.0176024 + N380*3.83443 - \left( {N380} \right)^{2} *4.01012 \\ N197 & = - 0.947113 + N380*4.34746 + N380*N302*0.391864 \\ & \quad - \left( {N380} \right)^{2} *4.90199 + N302*0.896456 - \left( {N302} \right)^{2} *0.0559059 \\ N302 & = 0.00439602 - N339*1.49386 - N339*N357*67.8386 \\ & \quad + \left( {N339} \right)^{2} *37.3589 + N357*2.47456 + \left( {N357} \right)^{2} *30.4492 \\ N339 & = 0.00924584 + N345*0.716211 + N345*N375*0.256732 \\ & \quad + \left( {N345} \right)^{2} *0.179385 + N375*0.0486508 \\ N129 & = - 0.0617473 - N344*N217*27.9366 + \left( {N344} \right)^{2} *13.1372 \\ & \quad + N217*1.40366 + \left( {N217} \right)^{2} *14.3235 \\ N217 & = 0.0372683 - N298*2.21564 - N298*N299*3.82076 \\ & \quad + \left( {N298} \right)^{2} *3.83466 + N299*2.97188 + \left( {N299} \right)^{2} *0.242383 \\ N298 & = - 0.00461328 - N338*0.605155 - N338*N357*37.0172 \\ & \quad + \left( {N338} \right)^{2} *20.7828 + N357*1.65003 + \left( {N357} \right)^{2} *16.1369 \\ N357 & = 0.224904 - \sqrt[3]{{x_{4} }}*1.55475 - \sqrt[3]{{x_{4} }}*N375*0.51028 \\ & \quad + \left( {\sqrt[3]{{x_{4} }}} \right)^{2} *2.47322 + N375*0.443408 \\ N375 & = - 1.3152 + \sqrt[3]{{x_{2} }}*\sqrt[3]{{x_{3} }} *0.0459091 + \sqrt[3]{{x_{3} }}*1.11126 - \left( {\sqrt[3]{{x_{3} }}} \right)^{2} *0.186381 \\ N338 & = 0.0129124 + N345*N356*43.7902 - \left( {N345} \right)^{2} *21.8442 \\ & \quad + N356*0.911248 - \left( {N356} \right)^{2} *21.7936 \\ N344 & = - 0.477016 + N353*1.12265 - N353*N379*0.265719 \\ & \quad + N379*2.10893 - \left( {N379} \right)^{2} *2.25038 \\ N353 & = - 0.0220018 + N356*0.994495 + N377*0.0584774 \\ N48 & = - 0.000454786 - N69*N71*0.870543 \\ & \quad + \left( {N69} \right)^{2} *0.868246 + N71*1.00227 \\ N71 & = 0.0109597 - N139*N214*50.1732 + \left( {N139} \right)^{2} *25.6696 \\ & \quad + N214*0.921561 + \left( {N214} \right)^{2} *24.5636 \\ N214 & = - 0.0144738 + N331*1.08299 - N331*N269*19.656 \\ & \quad + \left( {N331} \right)^{2} *7.87523 + \left( {N269} \right)^{2} *11.6828 \\ N269 & = - 0.285722 + N380*1.126 - N380*N303*0.586986 \\ & \quad - \left( {N380} \right)^{2} *1.0272 + N303*1.25418 \\ N303 & = 0.00379619 + \sqrt[3]{{x_{2} }}*0.0252342 + \sqrt[3]{{x_{2} }}*N334*0.0472854 \\ & \quad + N334*0.771192 + \left( {N334} \right)^{2} *0.17568 \\ N69 & = - 0.0119576 + N273*1.07403 - N273*N139*29.6595 \\ & \quad + \left( {N273} \right)^{2} *13.7071 + \left( {N139} \right)^{2} *15.8416 \\ N139 & = 1.31772 - \sqrt[3]{{x_{4} }}*7.24065 - \sqrt[3]{{x_{4} }}*N268*15.7399 \\ & \quad + \left( {\sqrt[3]{{x_{4} }}} \right)^{2} *9.82624 + N268*6.84983 + \left( {N268} \right)^{2} *6.10165 \\ N268 & = - 0.9162 + N380*4.16699 + N380*N336*0.265379 \\ & \quad - \left( {N380} \right)^{2} *4.69022 + N336*0.98972 - \left( {N336} \right)^{2} *0.0976737 \\ N336 & = 0.0171419 + \sqrt[3]{{x_{2} }}*0.0106666 + \sqrt[3]{{x_{2} }}*N345*0.0751379 \\ & \quad + N345*0.748366 + \left( {N345} \right)^{2} *0.170354 \\ N273 & = - 0.0680299 + N380*0.191049 - N380*N304*0.643235 \\ & \quad + N304*1.20139 + \left( {N304} \right)^{2} *0.0835203 \\ N304 & = - 0.0193152 + N334*0.777182 + N334*N377*0.252188 \\ & \quad + \left( {N334} \right)^{2} *0.109905 + N377*0.0983817 \\ N118 & = 0.0155467 - N136*0.337627 - N136*N223*22.2581 \\ & \quad + \left( {N136} \right)^{2} *12.3103 + N223*1.23063 + \left( {N223} \right)^{2} *10.046 \\ N223 & = - 0.0208803 - N286*2.33259 + N286*N299*41.8394 \\ & \quad - \left( {N286} \right)^{2} *15.7271 + N299*3.48829 - \left( {N299} \right)^{2} *26.2913 \\ N299 & = - 0.0212474 + N331*0.802107 + N331*N376*0.275152 \\ & \quad + \left( {N331} \right)^{2} *0.0724277 + N376*0.0897678 \\ N331 & = - 0.676945 + \sqrt[3]{{x_{4} }}*2.13489 - \left( {\sqrt[3]{{x_{4} }}} \right)^{2} *0.948832 \\ & \quad - N334*0.303469 + \left( {N334} \right)^{2} *0.92214 \\ N286 & = 0.0171763 + N332*0.675503 + N332*N376*0.481898 \\ & \quad + \left( {N332} \right)^{2} *0.116863 + N376*0.0098905 \\ N376 & = 3.96757*10^{ - 14} + N377*1 \\ N332 & = - 0.254285 + N334*1.1415 - N334*N380*0.346046 \\ & \quad + N380*0.997576 - \left( {N380} \right)^{2} *0.884078 \\ N334 & = 0.665183 - \sqrt[3]{{x_{1} }}*0.151091 + \sqrt[3]{{x_{1} }}*\sqrt[3]{{x_{4} }}*0.212101 \\ & \quad + \left( {\sqrt[3]{{x_{1} }}} \right)^{2} *0.00618198 - \sqrt[3]{{x_{4} }}*1.99001 + \left( {\sqrt[3]{{x_{4} }}} \right)^{2} *2.16703 \\ N136 & = 0.0109802 - N247*0.896005 - N247*N346*19.3321 \\ & \quad + \left( {N247} \right)^{2} *11.8366 + N346*1.81279 + \left( {N346} \right)^{2} *7.56095 \\ N346 & = - 0.483901 + N354*1.11989 - N354*N379*0.267761 \\ & \quad + N379*2.11768 - \left( {N379} \right)^{2} *2.224 \\ N379 & = - 8.47397 + \sqrt[3]{{x_{3} }}*3.10228 - \sqrt[3]{{x_{3} }}*N380*2.08197 \\ & \quad - \left( {\sqrt[3]{{x_{3} }}} \right)^{2} *0.336827 + N380*16.7518 - \left( {N380} \right)^{2} *9.85072 \\ N354 & = - 1.37254*10^{ - 13} + N356*1 \\ N356 & = 0.325471 + \sqrt[3]{{x_{2} }}*0.0275276 - \sqrt[3]{{x_{4} }}*1.60857 + \left( {\sqrt[3]{{x_{4} }}} \right)^{2} *2.35855 \\ N247 & = - 0.818308 + N380*3.6748 - \left( {N380} \right)^{2} *4.05446 \\ & \quad + N329*1.06662 - (N329)^{2} *0.060733 \\ N329 & = 0.0216857 + N345*0.60242 + N345*N377*0.531008 \\ & \quad + \left( {N345} \right)^{2} *0.173633 + N377*0.0189504 \\ N377 & = 0.0244881 + \sqrt[3]{{x_{1} }}*0.0503244 - \sqrt[3]{{x_{1} }}*\sqrt[3]{{x_{2} }}*0.0191276 + \sqrt[3]{{x_{2} }}*0.274573 \\ N345 & = 1.09654 + \sqrt[3]{{x_{3} }}*\sqrt[3]{{x_{4} }}*0.427947 - \left( {\sqrt[3]{{x_{3} }}} \right)^{2} *0.0443035 \\ & \quad - \sqrt[3]{{x_{4} }}*3.60702 + \left( {\sqrt[3]{{x_{4} }}} \right)^{2} *2.68179 \\ N380 & = 0.967148 - \sqrt[3]{{x_{1} }}*1.74116 + \sqrt[3]{{x_{1} }}*\sqrt[3]{{x_{3} }}*0.435543 + \\ & \quad \left( {\sqrt[3]{{x_{1} }}} \right)^{2} *0.0204996 + \sqrt[3]{{x_{3} }}*1.57949 - \left( {\sqrt[3]{{x_{3} }}} \right)^{2} *0.452209. \\ \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komeilibirjandi, A., Raffiee, A.H., Maleki, A. et al. Thermal conductivity prediction of nanofluids containing CuO nanoparticles by using correlation and artificial neural network. J Therm Anal Calorim 139, 2679–2689 (2020). https://doi.org/10.1007/s10973-019-08838-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08838-w

Keywords

Navigation