Skip to main content
Log in

Convective heat transfer performance of hybrid nanofluid in a horizontal pipe considering nanoparticles shapes effect

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this paper, the problem of steady forced convection heat transfer and fluid flow characteristics of a hybrid nanofluid flowing through an isothermally heated horizontal tube considering various nanoparticle shapes has been investigated numerically. The three dimensionless cylindrical coordinate equations are discretized using the finite volume method and solved via a FORTRAN program. A numerical parametric investigation is carried out for a tube filled with regular water, (TiO2/water) nanofluid and (Ag–TiO2/water) hybrid nanofluid. Four different types of nanoparticle shapes are considered in this study, spherical, cylindrical, platelets and blades, with different volume fractions ranging from 0 to 8% using water as a base liquid. The influence of nanoparticle shape, nanoparticle concentration and Reynolds number on the local Nusselt number and the friction factor is essentially examined. The results showed that the friction factor of both nanofluid and hybrid nanofluid flow was increased as the nanoparticle volume fraction increased for all kinds of nanoparticle shapes, whereas it decreased as the Reynolds number increased. Nusselt number increased with increase in the nanoparticle concentration and Reynolds number. The highest heat transfer rate was acquired for the maximum nanoparticle volume concentration by using blade nanoparticle shape followed by platelet shape, cylindrical shape and lastly the sphere shape. It was found that the maximum values of the friction factor were registered for platelet-shape nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

Cp:

Heat capacity (J kg−1 K−1)

D :

Diameter of tube (m)

f :

Friction factor (–)

g :

Gravitational acceleration (m s−2)

h :

Convective heat transfer coefficient (W m−2 K−1)

Gr :

Grashof number \(( = g\beta_{\text{f}} q^{\prime \prime } D^{4} /k_{\text{f}} \nu_{\text{f}}^{2} )\)

k :

Thermal conductivity (W m−1 K−1)

L :

Length (m)

Nu :

Nusselt number (= hD/k)

Pr :

Prandtl number \(( = {\text{Cp}}_{\text{f}} \cdot \mu_{\text{f}} /k_{\text{f}} )\)

P :

Pressure (Pa)

P * :

Dimensionless pressure \(( = P/\rho_{\text{hnf}} v_{0}^{2} )\)

\(q^{\prime \prime }\) :

Uniform heat flux (W m−2)

Re :

Reynolds number \(( = \rho_{\text{f}} v_{0} D/\mu_{\text{f}} )\)

r :

Radial direction (m)

\(r^{*}\) :

Dimensionless radius (= r/D)

T :

Temperature (K)

\(T^{*}\) :

Dimensionless temperature \(( = (T - T_{0} )/(q_{\text{w}} D/k_{\text{nf}} )\)

t :

Time (s)

\(t^{*}\) :

Dimensionless time \(( = v_{0} t/D)\)

u :

Radial velocity component (m s−1)

\(u^{*}\) :

Dimensionless radial velocity (= u/v0)

v :

Axial velocity component (m s−1)

\(v^{*}\) :

Dimensionless axial velocity (= v/v0)

w:

Tangential velocity (m s−1)

\(w^{*}\) :

Dimensionless tangential velocity \(( = w/v_{0} )\)

z:

Axial direction (m)

\(z^{*}\) :

Dimensionless axial direction (= z/D)

\(\beta\) :

Volumetric expansion coefficient (K−1)

θ :

Angular coordinate

\(\phi\) :

Volume fraction

µ :

Dynamic viscosity (kg m−1 s−1)

υ :

Kinematic viscosity (m2 s−1)

b:

Bulk

hnf:

Hybrid nanofluid

nf:

Nanofluid

f:

Base fluid

0:

Inlet condition

*:

Dimensionless parameters

References

  1. Choi SUS. Enhancing thermal conductivity of fluids with nanoparticles. ASME Publ Fed. 1995;231:99–106.

    CAS  Google Scholar 

  2. Sharma A. A comprehensive study of solar power in India and World. Renew Sustain Energy Rev. 2011;15:1767–76.

    Article  Google Scholar 

  3. Thirugnanasambandam M, Iniyan S, Goic R. A review of solar thermal technologies☆. Renew Sustain Energy Rev. 2010;14:312–22.

    Article  CAS  Google Scholar 

  4. Raja Sekhar Y, Sharma KV, Thundil Karupparaj R, Chiranjeevi C. Heat transfer enhancement with Al2O3 nanofluids and twisted tapes in a pipe for solar thermal applications. Procedia Eng. 2013;64:1474–84.

    Article  CAS  Google Scholar 

  5. Krajnik P, Pusavec F, Rashid A. Nanofluids: properties, applications and sustainability aspects in materials processing technologies. 2011. p. 107–13.

  6. Salata O. Applications of nanoparticles in biology and medicine. J Nanobiotechnol. 2004;2:1–6.

    Article  Google Scholar 

  7. Duangthongsuk W, Wongwises S. Heat transfer enhancement and pressure drop characteristics of TiO2–water nanofluid in a double-tube counter flow heat exchanger. Int J Heat Mass Transf. 2009;52:2059–67.

    Article  CAS  Google Scholar 

  8. Saidur R, Leong KY, Mohammad HA. A review on applications and challenges of nanofluids. Renew Sustain Energy Rev. 2011;15:1646–68.

    Article  CAS  Google Scholar 

  9. Jajja SA, Ali W, Ali HM. Multiwalled carbon nanotube nanofluid for thermal management of high heat generating computer processor. Heat Transf Asian Res. 2014;43:653–66.

    Article  Google Scholar 

  10. Ali HM, Arshad W. Thermal performance investigation of staggered and inline pin fin heat sinks using water based rutile and anatase TiO2 nanofluids. Energy Convers Manag. 2015;106:793–803.

    Article  CAS  Google Scholar 

  11. Ali HM, Ali H, Liaquat H, Maqsood HTB, Nadir MA. Experimental investigation of convective heat transfer augmentation for car radiator using ZnO/water nanofluid. Energy. 2015;84:317–24.

    Article  CAS  Google Scholar 

  12. Ali HM, Arshad W. Effect of channel angle of pin–fin heat sink on heat transfer performance using water based graphene nanoplatelets nanofluids. Int J Heat Mass Transf. 2017;106:465–72.

    Article  CAS  Google Scholar 

  13. Arshad W, Ali HM. Graphene nanoplatelets nanofluids thermal and hydrodynamic performance on integral fin heat sink. Int J Heat Mass Transf. 2017;107:995–1001.

    Article  CAS  Google Scholar 

  14. Arshad W, Ali HM. Experimental investigation of heat transfer and pressure drop in a straight minichannel heat sink using TiO2 nanofluid. Int J Heat Mass Transf. 2017;110:248–56.

    Article  CAS  Google Scholar 

  15. Jafaryar M, Sheikholeslami M, Li Z, Moradi R. Nanofluid turbulent flow in a pipe under the effect of twisted tape with alternate axis. J Therm Anal Calorim. 2018;135:305–23.

    Article  CAS  Google Scholar 

  16. Sheikholeslami M, Jafaryar M, Shafee A, Li Z. Nanofluid heat transfer and entropy generation through a heat exchanger considering a new turbulator and CuO nanoparticles. J Therm Anal Calorim. 2018;134:2295–303.

    Article  CAS  Google Scholar 

  17. Sheikholeslami M, Arabkoohsar A, Khan I, Shafee A, Li Z. Impact of Lorentz forces on Fe3O4–water ferrofluid entropy and exergy treatment within a permeable semi annulus. J Clean Prod. 2019;221:885–98.

    Article  CAS  Google Scholar 

  18. Sheikholeslami M. Numerical approach for MHD Al2O3–water nanofluid transportation inside a permeable medium using innovative computer method. Comput Methods Appl Mech Eng. 2019;344:306–18.

    Article  Google Scholar 

  19. Sheikholeslami M. New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media. Comput Methods Appl Mech Eng. 2019;344:319–33.

    Article  Google Scholar 

  20. Sheikholeslami M, Mahian O. Enhancement of PCM solidification using inorganic nanoparticles and an external magnetic field with application in energy storage systems. J Clean Prod. 2019;215:963–77.

    Article  CAS  Google Scholar 

  21. Sheikholeslami M, Haq R-U, Shafee A, Li Z. Heat transfer behavior of nanoparticle enhanced PCM solidification through an enclosure with V shaped fins. Int J Heat Mass Transf. 2019;130:1322–42.

    Article  CAS  Google Scholar 

  22. Sheikholeslami M, Jafaryar M, Hedayat M, Shafee A, Li Z, Nguyen TK, Bakouri M. Heat transfer and turbulent simulation of nanomaterial due to compound turbulator including irreversibility analysis. Int J Heat Mass Transf. 2019;137:1290–300.

    Article  CAS  Google Scholar 

  23. Sheikholeslami M, Gerdroodbary MB, Moradi R, Shafee A, Li Z. Application of neural network for estimation of heat transfer treatment of Al2O3–H2O nanofluid through a channel. Comput Methods Appl Mech Eng. 2019;344:1–12.

    Article  Google Scholar 

  24. Benkhedda M, Boufendi T. Computational study of the mixed convection heat transfer of Ag–water nanofluid in an annular duct. In: IRSEC2016, IEEE, Marrakech, Morocco; 2016.

  25. Timofeeva EV, Routbort JL, Singh D. Particle shape effects on thermophysical properties of alumina nanofluids. J Appl Phys. 2009;106:014304.

    Article  CAS  Google Scholar 

  26. Sheikholeslami M, Sajjadi H, Amiri Delouei A, Atashafrooz M, Li Z. Magnetic force and radiation influences on nanofluid transportation through a permeable media considering Al2O3 nanoparticles. J Therm Anal Calorim. 2018;136:2477–85.

    Article  CAS  Google Scholar 

  27. Jeong J, Li C, Kwon Y, Lee J, Kim SH, Yun R. Particle shape effect on the viscosity and thermal conductivity of ZnO nanofluids. Int J Refrig. 2013;36:2233–41.

    Article  CAS  Google Scholar 

  28. Murshed S, Leong K, Yang C. Enhanced thermal conductivity of TiO2/water based nanofluids. Int J Therm Sci. 2005;44:367–73.

    Article  CAS  Google Scholar 

  29. Vanaki SM, Mohammed HA, Abdollahi A, Wahid MA. Effect of nanoparticle shapes on the heat transfer enhancement in a wavy channel with different phase shifts. J Mol Liq. 2014;196:32–42.

    Article  CAS  Google Scholar 

  30. Akbar NS, Tripathi D, Bég OA. Modeling nanoparticle geometry effects on peristaltic pumping of medical magnetohydrodynamic nanofluids with heat transfer. J Mech Med Biol. 2016;16:1650088.

    Article  Google Scholar 

  31. Hatami M, Jafaryar M, Zhou J, Jing D. Investigation of engines radiator heat recovery using different shapes of nanoparticles in H2O/(CH2OH)2 based nanofluids. Int J Hydrog Energy. 2017;42:10891–900.

    Article  CAS  Google Scholar 

  32. Ellahi R, Hassan M, Zeeshan A. Shape effects of nanosize particles in Cu–H2O nanofluid on entropy generation. Int J Heat Mass Transf. 2015;81:449–56.

    Article  CAS  Google Scholar 

  33. Elias MM, Miqdad M, Mahbubul IM, Saidur R, Kamalisarvestani M, Sohel MR, Hepbasli A, Rahim NA, Amalina MA. Effect of nanoparticle shape on the heat transfer and thermodynamic performance of a shell and tube heat exchanger. Int Commun Heat Mass Transf. 2013;44:93–9.

    Article  CAS  Google Scholar 

  34. Tayebi T, Chamkha AJ. Buoyancy-driven heat transfer enhancement in a sinusoidally heated enclosure utilizing hybrid nanofluid. Comput Therm Sci Int J. 2017;9:405–21.

    Article  Google Scholar 

  35. Tayebi T, Chamkha AJ. Natural convection enhancement in an eccentric horizontal cylindrical annulus using hybrid nanofluids. Numer Heat Transf Part A Appl. 2017;71:1159–73.

    Article  CAS  Google Scholar 

  36. Tayebi T, Chamkha AJ. Entropy generation analysis due to MHD natural convection flow in a cavity occupied with hybrid nanofluid and equipped with a conducting hollow cylinder. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08651-5.

    Article  Google Scholar 

  37. Ali HM, Babar H, Shah TR, Sajid MU, Qasim MA, Javed S. Preparation techniques of TiO2 nanofluids and challenges: a review. Appl Sci. 2018;8:587.

    Article  CAS  Google Scholar 

  38. Sajid MU, Ali HM. Thermal conductivity of hybrid nanofluids: a critical review. Int J Heat Mass Transf. 2018;126:211–34.

    Article  CAS  Google Scholar 

  39. Babar H, Ali HM. Viscosity of hybrid nanofluids: a critical review, Therm Sci. 2019;15.

  40. Suresh S, Venkitaraj KP, Selvakumar P, Chandrasekar M. Synthesis of Al2O3–Cu/water hybrid nanofluids using two step method and its thermo physical properties. Colloids Surf A. 2011;388:41–8.

    Article  CAS  Google Scholar 

  41. Nine MdJ, Munkhbayar B, Rahman MS, Chung H, Jeong H. Highly productive synthesis process of well dispersed Cu2O and Cu/Cu2O nanoparticles and its thermal characterization. Mater Chem Phys. 2013;141:636–42.

    Article  CAS  Google Scholar 

  42. Batmunkh M, Tanshen MdR, Nine MdJ, Myekhlai M, Choi H, Chung H, Jeong H. Thermal conductivity of TiO2 nanoparticles based aqueous nanofluids with an addition of a modified silver particle. Ind Eng Chem Res. 2014;53:8445–51.

    Article  CAS  Google Scholar 

  43. Hemmat Esfe M, Wongwises S, Naderi A, Asadi A, Safaei MR, Rostamian H, Dahari M, Karimipour A. Thermal conductivity of Cu/TiO2–water/EG hybrid nanofluid: experimental data and modeling using artificial neural network and correlation. Int Commun Heat Mass Transf. 2015;66:100–4.

    Article  CAS  Google Scholar 

  44. Toghraie D, Chaharsoghi VA, Afrand M. Measurement of thermal conductivity of ZnO–TiO2/EG hybrid nanofluid. J Therm Anal Calorim. 2016;125:527–35.

    Article  CAS  Google Scholar 

  45. Baby TT, Sundara R. Synthesis and transport properties of metal oxide decorated graphene dispersed nanofluids. J Phys Chem C. 2011;115(17):8527–33.

    Article  CAS  Google Scholar 

  46. Takabi B, Gheitaghy AM, Tazraei P. Hybrid water-based suspension of Al2O3 and Cu nanoparticles on laminar convection effectiveness. J Thermophys Heat Transf. 2016;30:523–32.

    Article  CAS  Google Scholar 

  47. Rahman MRA, Leong KY, Idris AC, Saad MR, Anwar M. Numerical analysis of the forced convective heat transfer on Al2O3–Cu/water hybrid nanofluid. Heat Mass Transf. 2016;53:1835–42.

    Article  CAS  Google Scholar 

  48. Balla HH, Abdullah S, Faizal WM, Zulkifli R, Sopian K. Numerical study of the enhancement of heat transfer for hybrid CuO–Cu nanofluids flowing in a circular pipe. J Oleo Sci. 2013;62(7):533–9.

    Article  CAS  Google Scholar 

  49. Labib MN, Nine MJ, Afrianto H, Chung H, Jeong H. Numerical investigation on effect of base fluids and hybrid nanofluid in forced convective heat transfer. Int J Therm Sci. 2013;71:163–71.

    Article  CAS  Google Scholar 

  50. Tayebi T, Chamkha AJ. Free convection enhancement in an annulus between horizontal confocal elliptical cylinders using hybrid nanofluids. Numer Heat Transf Part A Appl. 2016;70:1141–56.

    Article  CAS  Google Scholar 

  51. Benkhedda M, Boufendi T, Touahri S. Laminar mixed convective heat transfer enhancement by using Ag–TiO2–water hybrid nanofluid in a heated horizontal annulus. Heat Mass Transf. 2018;54:2799–814.

    Article  CAS  Google Scholar 

  52. Brinkman HC. The viscosity of concentrated suspensions and solutions. J Chem Phys. 1952;20:571.

    Article  CAS  Google Scholar 

  53. Maxwell JC. A treatise on electricity and magnetism. Oxford: Clarendon Press; 1881.

    Google Scholar 

  54. Patankar SV. Numerical heat transfer and fluid flow. New York: McGraw-Hill; 1980.

    Google Scholar 

  55. Shah RK, London AL. Laminar flow forced convection heat transfer and flow friction in straight and curved ducts—a summary of analytical solutions. New York: Academic Press; 1971.

    Google Scholar 

  56. Shah RK, Bhatti MS. Laminar convective heat transfer in ducts, chapter 3. In: Kakac S, editor. New York: Wiley; 1987.

Download references

Acknowledgements

The authors would like to acknowledge the Energy Physics Laboratory (LPE) of Brothers Mentouri University of Constantine (Algeria) and the Algerian Ministry of High Education and Scientific Research (MESRS) for the financial support through FNR Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Benkhedda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benkhedda, M., Boufendi, T., Tayebi, T. et al. Convective heat transfer performance of hybrid nanofluid in a horizontal pipe considering nanoparticles shapes effect. J Therm Anal Calorim 140, 411–425 (2020). https://doi.org/10.1007/s10973-019-08836-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08836-y

Keywords

Navigation