Skip to main content
Log in

Effect of tube material on convective heat transfer of various nanofluids

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This work presents the convective heat transfer and friction loss characteristics of novel functionalized graphene-based and metal oxide nanofluids. The convective heat transfer in circular tubes of different materials (copper, aluminium and stainless steel 316) was used at constant wall heat flux of 23,870 W m−2. An innovative approach was used to prepare highly dispersed propylene glycol-treated graphene nanoplatelets–water (GNP1) and trimethylolpropane tris amine–water (GNP2) by functionalization method. The measured thermal conductivity of GNP1 and GNP2 nanofluids showed incredible performance which increased up to 32% and 31% higher than that of basefluid. By comparing material effect, copper tube showed the highest HTC up to 119% in GNP1 at 0.1 mass%, while in aluminium and stainless steel 316 tube the highest heat transfer coefficient (HTC) was 110.2% and 100.68%. Besides, alumina and silicon dioxide nanofluids also presented decent increment in HTC which was up to 29.1% and 31.6%, respectively. The highest rise in friction factor for GNP1 and GNP2 was obtained up to 10.2% and 10%, respectively. For alumina and silicon dioxide nanofluids, the friction factor was measured up to 5.92% and 7.14% at velocity range of 1–3 m s−1. The maximum enhancement in Nusselt number (Nu) for GNP, GNP2, alumina and silicon dioxide nanofluids was achieved up to 84%, 72%, 26% and 28%. The results suggest that the copper tube which is a good conductor of heat could be used in the heat exchangers and functionalized GNP nanofluids can be used as the heat exchanging fluids in heat transfer applications which could give a decent substitute to traditional working fluids in heat exchangers and in thermal fluid systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

D :

Diameter (m)

L :

Tube length (m)

Cp:

Specific heat (J kg−1 K−1)

Pe:

Peclet number

V :

Velocity (m s−1)

n :

Number of tubes

q :

Heat transfer (W)

Nu:

Nusselt number

m o :

Mass flow rate (kg s−1)

Re:

Reynolds number

U :

Velocity (m s−1)

T :

Temperature (°C)

W :

Pumping power

k :

Thermal conductivity (W m−1 K−1)

H :

Heat transfer coefficient (W m−2 K−1)

Pr:

Prandtl number

A :

Area (m2)

F :

Friction factor

ΔP :

Pressure drop (Pa)

ή :

Efficiency of loop

ε:

Performance index

µ :

Viscosity (Pa s)

ρ :

Density (kg m−3)

w:

Tube wall

p:

Particles

nf:

Nanofluid

bf:

Basefluid

ID:

Inner diameter

b:

Bulkfluid

out:

Outlet

OD:

Outer diameter

Tb:

Bulk temperature

in:

Inlet

References

  1. Amani M, Amani P, Bahiraei M, Wongwises S. Prediction of hydrothermal behavior of a non-Newtonian nanofluid in a square channel by modeling of thermophysical properties using neural network. J Therm Anal Calorim. 2019;135(2):901–10.

    Article  CAS  Google Scholar 

  2. Animasaun IL, Koriko KS, Adegbie HA, Babatunde RO, Ibraheem N, Sandeep B. Comparative analysis between 36 nm and 47 nm alumina–water nanofluid flows in the presence of Hall effect. J Therm Anal Calorim. 2019;135(2):873–86.

    Article  CAS  Google Scholar 

  3. Arya A, Sarafraz MM, Shahmiri S, Madani SAH, Nikkhah V, Nakhjavani SM. Thermal performance analysis of a flat heat pipe working with carbon nanotube-water nanofluid for cooling of a high heat flux heater. Heat Mass Transf. 2018;54(4):985–97.

    Article  CAS  Google Scholar 

  4. Ali HM, Ali H, Liaquat H, Bin Maqsood HT, Nadir MA. Experimental investigation of convective heat transfer augmentation for car radiator using ZnO–water nanofluids. Energy. 2015;84:317–24.

    Article  CAS  Google Scholar 

  5. Amiri A, Arzani HK, Kazi SN, Chew BT, Badarudin A. Backward-facing step heat transfer of the turbulent regime for functionalized graphene nanoplatelets based water–ethylene glycol nanofluids. Int J Heat Mass Transf. 2016;97:538–46.

    Article  CAS  Google Scholar 

  6. Salari E, Peyghambarzadeh M, Sarafraz MM, Hormozi F, Nikkhah V. Thermal behavior of aqueous iron oxide nano-fluid as a coolant on a flat disc heater under the pool boiling condition. Heat Mass Transf. 2017;53(1):265–75.

    Article  CAS  Google Scholar 

  7. Ali HM, Arshad W. Thermal performance investigation of staggered and inline pin fin heat sinks using water based rutile and anatase TiO2 nanofluids. Energy Convers Manag. 2015;106:793–803.

    Article  CAS  Google Scholar 

  8. Ali HM, Arshad W. Effect of channel angle of pin-fin heat sink on heat transfer performance using water based graphene nanoplatelets nanofluids. International Journal of Heat and Mass Transfer. 2016.

  9. Ashori A, Menbari S, Bahrami R. Mechanical and thermo-mechanical properties of short carbon fiber reinforced polypropylene composites using exfoliated graphene nanoplatelets coating. J Ind Eng Chem. 2016;38:37–42.

    Article  CAS  Google Scholar 

  10. Khosrojerdi S, Vakili M, Yahyaei M, Kalhor K. Thermal conductivity modeling of graphene nanoplatelets/deionized water nanofluid by MLP neural network and theoretical modeling using experimental results. Int Commun Heat Mass Transf. 2016;74:11–7.

    Article  CAS  Google Scholar 

  11. Sadeghinezhad E, Togun H, Mehrali M, Sadeghi Nejad P, Tahan Latibari S, Abdulrazzaq T, Kazi SN, Metselaar HSC. An experimental and numerical investigation of heat transfer enhancement for graphene nanoplatelets nanofluids in turbulent flow conditions. Int J Heat Mass Transf. 2015;81:41–51.

    Article  CAS  Google Scholar 

  12. Mehrali M, Sadeghinezhad E, Akhiani AR, Tahan Latibari S, Talebian S, Dolatshahi-Pirouz A, Metselaar HSC, Mehrali M. An ecofriendly graphene-based nanofluid for heat transfer applications. J Clean Prod. 2016;137:555–66.

    Article  CAS  Google Scholar 

  13. Nikkhah V, Sarafraz MM, Hormozi F. Application of spherical copper oxide (II) water nano-fluid as a potential coolant in a boiling annular heat exchanger. Chem Biochem Eng Q. 2015;29(3):405–15.

    Article  CAS  Google Scholar 

  14. Ali HM, Arshad W. Effect of channel angle of pin-fin heat sink on heat transfer performance using water based graphene nanoplatelets nanofluids. Int J Heat Mass Transf. 2017;106:465–72.

    Article  CAS  Google Scholar 

  15. Ghozatloo A, Rashidi A, Shariaty-Niassar M. Convective heat transfer enhancement of graphene nanofluids in shell and tube heat exchanger. Exp Thermal Fluid Sci. 2014;53:136–41.

    Article  CAS  Google Scholar 

  16. Salari E, Peyghambarzadeh M, Sarafraz MM, Hormozi F. Boiling heat transfer of alumina nano-fluids: role of nanoparticle deposition on the boiling heat transfer coefficient. Periodica Polytech, Chem Eng. 2016;60(4):252–8.

    Article  CAS  Google Scholar 

  17. Ali HM, Babar H, Shah TR, Sajid MU, Qasim MA, Javed S. Preparation techniques of TiO2 nanofluids and challenges: a review. Appl Sci. 2018;8(4):587.

    Article  CAS  Google Scholar 

  18. Solangi KH, Amiri A, Luhur MR, Akbari Ghavimi SA, Kazi SN, Badarudin A, Mohd Zubir MN. Experimental investigation of heat transfer performance and frictional loss of functionalized GNP-based water coolant in a closed conduit flow. RSC Adv. 2016;6(6):4552–63.

    Article  CAS  Google Scholar 

  19. Iacobazzi F, Milanese M, Colangelo G, Lomascolo M, de Risi A. An explanation of the Al2O3 nanofluid thermal conductivity based on the phonon theory of liquid. Energy. 2016;116:786–94.

    Article  CAS  Google Scholar 

  20. Betz AR, Attinger D. Can segmented flow enhance heat transfer in microchannel heat sinks? Int J Heat Mass Transf. 2010;53(19):3683–91.

    Article  CAS  Google Scholar 

  21. Sarafraz MM, Safaei MR, Tian Z, Goodarzi M, Filho EPB, Arjomandi M. Thermal assessment of nano-particulate graphene-water/ethylene glycol (WEG 60:40) nano-suspension in a compact heat exchanger. Energies. 2019;12(10):1–17.

    Article  CAS  Google Scholar 

  22. Arshad W, Ali HM. Graphene nanoplatelets nanofluids thermal and hydrodynamic performance on integral fin heat sink. Int J Heat Mass Transf. 2017;107:995–1001.

    Article  CAS  Google Scholar 

  23. Hwang SH, Kim BJ, Baek JB, Shin HS, Bae IJ, Lee SY, Park YB. Effects of process parameters and surface treatments of graphene nanoplatelets on the crystallinity and thermomechanical properties of polyamide 6 composite fibers. Compos B Eng. 2016;100:220–7.

    Article  CAS  Google Scholar 

  24. Sarafraz MM, Hormozi F. Forced convective and nucleate flow boiling heat transfer to alumina nanofluids. Chem Eng. 2014;58(1):37–46.

    CAS  Google Scholar 

  25. Hafiz MA, Muhammad DA, Musab S, Qazi SS, Ahmed S. Heat transfer enhancement of car radiator using aqua based magnesium oxide nanofluids. J Therm Sci. 2015;19:2039–48.

    Article  Google Scholar 

  26. Sarafraz MM, Safaei MR. Diurnal thermal evaluation of an evacuated tube solar collector (ETSC) charged with graphene nanoplatelets-methanol nano-suspension. Renew Energy. 2019;142:364–72.

    Article  CAS  Google Scholar 

  27. Sarafraz MM, Yang B, Pourmehran O, Arjomandi M, Ghomashchi R. Fluid and heat transfer characteristics of aqueous graphene nanoplatelet (GNP) nanofluid in a microchannel. Int Commun Heat Mass Transf. 2019;107:24–33.

    Article  CAS  Google Scholar 

  28. Saad AJ, Wajahat A, Hafiz MA. Multiwalled carbon nanotube nanofluid for thermal management of high heat generating computer processor. Heat Transf Asian Res. 2013.

  29. Solangi KH, Amiri A, Luhur MR, Ghavimi SAA, Zubir MNM, Kazi SN, Badarudin A. Experimental investigation of the propylene glycol-treated graphene nanoplatelets for the enhancement of closed conduit turbulent convective heat transfer. Int Commun Heat Mass Transf. 2016;73:43–53.

    Article  CAS  Google Scholar 

  30. Goodarzi M, Kherbeet AS, Afrand M, Sadeghinezhad E, Mehrali M, Zahedi P, Wongwises S, Dahari M. Investigation of heat transfer performance and friction factor of a counter-flow double-pipe heat exchanger using nitrogen-doped, graphene-based nanofluids. Int Commun Heat Mass Transf. 2016;76:16–23.

    Article  CAS  Google Scholar 

  31. Soheila AAG, Mehran SH, Mohammad HE, Mohammad AS, Fateme FB. Preparation, characterization and biological assessment of polycaprolactone/starch composites for bone tissue engineering applications. Modares J Med Sci: Pathobiol. 2012;15:37–48.

    Google Scholar 

  32. Vakili M, Hosseinalipour SM, Delfani S, Khosrojerdi S, Karami M. Experimental investigation of graphene nanoplatelets nanofluid-based volumetric solar collector for domestic hot water systems. Sol Energy. 2016;131:119–30.

    Article  CAS  Google Scholar 

  33. Sarafraz MM, Hormozi F. Experimental investigation on the pool boiling heat transfer to aqueous multi-walled carbon nanotube nanofluids on the micro-finned surfaces. Int J Therm Sci. 2016;100:255–66.

    Article  CAS  Google Scholar 

  34. Sajid MU, Ali HM. Recent advances in application of nanofluids in heat transfer devices: a critical review. Renew Sustain Energy Rev. 2019;103:556–92.

    Article  CAS  Google Scholar 

  35. Solangi KH, Kazi SN, Luhur MR, Badarudin A, Amiri A, Sadri R, Zubir MNM, Gharehkhani S, Teng KH. A comprehensive review of thermo-physical properties and convective heat transfer to nanofluids. Energy. 2015;89:1065–86.

    Article  CAS  Google Scholar 

  36. Yarmand H, Gharehkhani S, Shirazi SFS, Amiri A, Alehashem MS, Dahari M, Kazi SN. Experimental investigation of thermo-physical properties, convective heat transfer and pressure drop of functionalized graphene nanoplatelets aqueous nanofluid in a square heated pipe. Energy Convers Manag. 2016;114:38–49.

    Article  CAS  Google Scholar 

  37. Arzani HK, Amiri A, Kazi SN, Chew BT, Badarudin A. Experimental and numerical investigation of thermophysical properties, heat transfer and pressure drop of covalent and noncovalent functionalized graphene nanoplatelet-based water nanofluids in an annular heat exchanger. Int Commun Heat Mass Transf. 2015;68:267–75.

    Article  CAS  Google Scholar 

  38. Sarafraz MM, Hormozi F, Nikkhah V. Thermal performance of a counter-current double pipe heat exchanger working with COOH-CNT/water nanofluids. Exp Thermal Fluid Sci. 2016;78:41–9.

    Article  CAS  Google Scholar 

  39. Selvam C, Balaji T, Mohan Lal D, Harish S. Convective heat transfer coefficient and pressure drop of water-ethylene glycol mixture with graphene nanoplatelets. Exp Thermal Fluid Sci. 2017;80:67–76.

    Article  CAS  Google Scholar 

  40. Selvam C, Lal DM, Harish S. Thermal conductivity enhancement of ethylene glycol and water with graphene nanoplatelets. Thermochim Acta. 2016;642:32–8.

    Article  CAS  Google Scholar 

  41. Xiao YJ, Wang WY, Chen XJ, Lin T, Zhang YT, Yang JH, Wang Y, Zhou ZW. Hybrid network structure and thermal conductive properties in poly(vinylidene fluoride) composites based on carbon nanotubes and graphene nanoplatelets. Compos A Appl Sci Manuf. 2016;90:614–25.

    Article  CAS  Google Scholar 

  42. Sarafraz MM, Tlili I, Tian Z, Bakouri M, Safaei MR, Goodarzi M. Thermal evaluation of graphene nanoplatelets nanofluid in a fast-responding HP with the potential use in solar systems in smart cities. Appl Sci. 2019;9(10):2101.

    Article  CAS  Google Scholar 

  43. Loni R, Asli AEA, Ghobadian B, Kasaeian AB, Bellos E. Energy and exergy investigation of alumina/oil and silica/oil nanofluids in hemispherical cavity receiver: experimental study. Energy. 2018;164:275–87.

    Article  CAS  Google Scholar 

  44. Tiwari AK, Ghosh P, Sarkar J. Performance comparison of the plate heat exchanger using different nanofluids. Exp Thermal Fluid Sci. 2013;49:141–51.

    Article  CAS  Google Scholar 

  45. Sun B, Peng C, Zuo R, Yang D, Li H. Investigation on the flow and convective heat transfer characteristics of nanofluids in the plate heat exchanger. Exp Thermal Fluid Sci. 2016;76:75–86.

    Article  CAS  Google Scholar 

  46. Leela VV, Suganthi KS, Rajan KS. Convective heat transfer performance of CuO–water nanofluids in U-shaped minitube: potential for improved energy recovery. Energy Convers Manag. 2016;118:415–25.

    Article  CAS  Google Scholar 

  47. Dittus FW, Boelter LMK. Heat transfer in automobile radiators of the tubular type. Int Commun Heat Mass Transf. 1985;12(1):3–22.

    Article  Google Scholar 

  48. Heris SZ, Shokrgozar M, Poorpharhang S, Shanbedi M, Noie SH. Experimental study of heat transfer of a car radiator with CuO/ethylene glycol-water as a coolant. J Dispers Sci Technol. 2013;35(5):677–84.

    Article  CAS  Google Scholar 

  49. Filonenko GK. Hydraulic resistance in pipes. Teploenergetika. 1954;1(4):40–4 (in Russian).

    Google Scholar 

  50. Yarmand H, Gharehkhani S, Ahmadi G, Shirazi SFS, Baradaran S, Montazer E, Zubir MNM, Alehashem MS, Kazi SN, Dahari M. Graphene nanoplatelets–silver hybrid nanofluids for enhanced heat transfer. Energy Convers Manag. 2015;100:419–28.

    Article  CAS  Google Scholar 

  51. Shanbedi M, Amiri A, Rashidi S, Heris SZ, Baniadam M. thermal performance prediction of two-phase closed thermosyphon using adaptive neuro-fuzzy inference system. Heat Transf Eng. 2015;36(3):315–24.

    Article  CAS  Google Scholar 

  52. Shanbedi M, Heris SZ, Baniadam M, Amiri A, Maghrebi M. Investigation of heat-transfer characterization of EDA-MWCNT/DI-water nanofluid in a two-phase closed thermosyphon. Ind Eng Chem Res. 2012;51(3):1423–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Universiti Teknologi Malaysia and Ministry of Higher Education, Malaysia, for their cooperation and assistance throughout this research. Special appreciation goes to the Research Management Centre of UTM for the financial support through the RUG funding QJ130000.2409.04G39 and QJ130000.2509.16H21.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. H. Solangi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 80 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solangi, K.H., Sharif, S. & Nizamani, B. Effect of tube material on convective heat transfer of various nanofluids. J Therm Anal Calorim 140, 63–77 (2020). https://doi.org/10.1007/s10973-019-08835-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08835-z

Keywords

Navigation