Skip to main content
Log in

Experimental investigation on the thermal performance and new correlation for thermal conductivity of aqueous copper oxide-doped MCM-41 nanofluids

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the present study, the pure MCM-41- and CuO-doped MCM-41 nanoparticles with various mass fractions of CuO were synthesized and used for the preparation of water-based nanofluids. The obtained nanoparticles were characterized using small-angle X-ray scattering, scanning electron microscopy, transmission electron microscopy and N2 adsorption/desorption analysis. The thermal conductivity of the water-based nanofluids with various mass fractions of nanoparticles including 0.1, 0.5 and 1 mass% was measured by KD2-Pro thermal analyzer. A new correlation is developed for the thermal conductivity of the nanofluid with a reasonably good accuracy (± 5%) when comparing to the experimental data. The thermal performance of these nanofluids together with hydraulic features such as friction factor and heat transfer coefficient was investigated using a mini-channel heat exchanger. The obtained results revealed that the thermal conductivity can be enhanced by 13.1% which belonged to the nanofluid with 1 mass% of CuO-doped MCM-41 nanoparticles. The maximum heat transfer coefficient enhancement was 31% and belonged to the nanofluid containing 50% CuO@MCM-41 nanoparticles at 0.5 mass%. The performance evaluation criterion (PEC) of the various nanofluids was also calculated, and it was identified that the nanoparticles with 50% CuO@MCM-41 dispersed in water have the largest PEC, 16.7% over the base fluid. The friction factor increases by adding the nanoparticles to the pure water. For example, at Re = 1200, the friction factor increases about 36.84% by using the 50%CuO@MCM-41 nanoparticles with 0.5 mass% as compared with the pure water. The friction factor decreases with increasing the Reynolds number. For example, for 50%CuO@MCM-41 and 0.5 mass%, the friction factor decreases up to 34.17% as the Reynolds number increases in the range of 400–1200.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Abbreviations

a :

Effective cross-sectional area of one adsorbate molecule, in square meters, 0.162 nm2 for nitrogen

A t :

Total heat transfer area, m2

C :

Dimensionless constant related to enthalpy of adsorption of adsorbate gas on powder sample

C p :

Specific heat capacity, J kg−1 K−1

D h :

Hydraulic diameter, m

\( f \) :

Darcy friction factor

H :

Heat transfer coefficient, W m−2 K−1

H c :

Height of channel, m

I :

Current, A

K :

Thermal conductivity, W m−1 K−1

L c :

Length of channel

m :

Mass of test powder, g

\( \dot{m} \) :

Mass flow rate, kg s−1

N :

Avogadro constant, 6.022 × 1023 mol−1

Nu:

Nusselt number

ΔP :

Pressure drop, Pa

P :

Partial vapor pressure of adsorbate gas in equilibrium with the surface at 77 K (b.p. of liquid nitrogen), Pa

P 0 :

Saturated pressure of adsorbate gas, Pa

PEC:

Performance evaluation criterion

Q :

Heat, W

Re:

Reynolds number

T :

Temperature, K

U :

Velocity, m s−1

V :

Voltage, V

V a :

Volume of gas adsorbed at standard temperature and pressure (273.15 K and 1.013 × 105 Pa), mL

V m :

Volume of gas adsorbed at standard temperature and pressure to produce an apparent monolayer on sample surface, mL

W c :

Width of channel, m

avg:

Average

B:

Balk

Bf:

Base fluid

F:

Fluid

in:

Inlet

nf:

Nanofluid

out:

Outlet

P:

Nanoparticle

w:

Wall

ρ :

Density, kg m−3

µ :

Viscosity, kg m−1 s−1

φ :

Volume fraction of particle

References

  1. Choi S, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. In: Siginer DA, Wang HP (eds) Developments and applications of non-newtonian flows, FED, vol 231/MD, New York: 1995.

  2. Das SK, Putra N, Thiesen P, Roetzel W. Temperature dependence of thermal conductivity enhancement for nanofluids. J Heat Transf. 2003;125(4):567–74.

    Article  CAS  Google Scholar 

  3. Shalkevich N, Escher W, Bürgi T, Michel B, Si-Ahmed L, Poulikakos D. On the thermal conductivity of gold nanoparticle colloids. Langmuir. 2010;26(2):663–70.

    Article  CAS  Google Scholar 

  4. Shah J, Gupta SK, Sonvane Y, Davariya V. Review: enhancing efficiency of solar thermal engineering systems by thermophysical properties of a promising nanofluids. Renew Sustaina Energy Rev. 2017;77:1343–8.

    Article  CAS  Google Scholar 

  5. Sundar LS, Singh MK, Punnaiah V, Sousa ACM. Experimental investigation of Al2O3/water nanofluids on the effectiveness of solar flat-plate collectors with and without twisted tape inserts. Renew Energy. 2018;119:820–33.

    Article  CAS  Google Scholar 

  6. Yang L, Du K. A comprehensive review on heat transfer characteristics of TiO2 nanofluids. Int J Heat Mass Transf. 2017;108:11–31.

    Article  CAS  Google Scholar 

  7. Yan S, Wang F, Shi Z, Tian R. Heat transfer property of SiO2/water nanofluid flow inside solar collector vacuum tubes. Appl Thermal Eng. 2017;118:385–91.

    Article  CAS  Google Scholar 

  8. Agarwal R, Verma K, Agrawal NK, Duchaniya RK, Singh R. Synthesis, characterization, thermal conductivity and sensitivity of CuO nanofluids. Appl Thermal Eng. 2016;102:1024–36.

    Article  CAS  Google Scholar 

  9. Yang J-C, Li F-C, He Y-R, Huang Y-M, Jiang B-C. Experimental study on the characteristics of heat transfer and flow resistance in turbulent pipe flows of viscoelastic-fluid-based Cu nanofluid. Int J Heat Mass Transf. 2013;62:303–13.

    Article  CAS  Google Scholar 

  10. Hemmat Esfe M, Saedodin S, Biglari M, Rostamian H. An experimental study on thermophysical properties and heat transfer characteristics of low volume concentrations of Ag-water nanofluid. Int Commun Heat Mass Transf. 2016;74:91–7.

    Article  CAS  Google Scholar 

  11. Ternik P. Conduction and convection heat transfer characteristics of water–Au nanofluid in a cubic enclosure with differentially heated side walls. Int J Heat Mass Transf. 2015;80:368–75.

    Article  CAS  Google Scholar 

  12. Hashemzadeh S, Hormozi F. An experimental study on hydraulic and thermal performances of hybrid nanofluids in mini-channel. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08626-6.

    Article  Google Scholar 

  13. Barewar SD, Chougule SS, Jadhav J, Biswas S. Synthesis and thermo-physical properties of water-based novel Ag/ZnO hybrid nanofluids. J Therm Anal Calorim. 2018;134:1493–504.

    Article  CAS  Google Scholar 

  14. Hosseinirad E, Hormozi F. Performance intensification of miniature channel using wavy vortex generator and optimization by response surface methodology: MWCNT-H2O and Al2O3-H2O nanofluids as coolant fluids. Chem Eng Process Process Intensif. 2018;124:83–96.

    Article  CAS  Google Scholar 

  15. Sarbazi Z, Hormozi F. Optimization of thermal and hydraulic performance of nanofluids in a rectangular miniature-channel with various fins using response surface methodology. J Therm Anal Calorim. 2019;137:711–33.

    Article  CAS  Google Scholar 

  16. Bahrami Z, Badiei A, Ziarani GM. Carboxylic acid-functionalized SBA-15 nanorods for gemcitabine delivery. J Nanopart Res. 2015;17(125):2–12.

    Google Scholar 

  17. Giraldo LF, Pérez L, Urrego S, Sierra L, Mesa M. Mesoporous silica applications. Macromol Symp. 2007;258:129–41.

    Article  CAS  Google Scholar 

  18. Bahrami Z, Badiei A, Atyabi F. Surface functionalization of SBA-15 nanorods for anticancer drug delivery. Chem Eng Res Des. 2014;92:1296–303.

    Article  CAS  Google Scholar 

  19. Bahrami Z, Badiei A, Atyabi F, Darabi HR, Mehravi B. Piperazine and its carboxylic acid derivatives-functionalized mesoporous silica as nanocarriers for gemcitabine: adsorption and release study. Mater Sci Eng, C. 2015;49:66–74.

    Article  CAS  Google Scholar 

  20. Nejat T, Jalalinejad P, Hormozi F, Bahrami Z. Hydrogen production from steam reforming of ethanol over Ni–Co bimetallic catalysts and MCM-41 as support. J Taiwan Inst Chem Eng. 2019. https://doi.org/10.1016/j.jtice.2019.01.025.

    Article  Google Scholar 

  21. Suganthi KS, Rajan KS. Metal oxide nanofluids: review of formulation, thermo-physical properties, mechanisms, and heat transfer performance. Renew Sustain Energy Rev. 2017;76:226–55.

    Article  CAS  Google Scholar 

  22. Tadjarodi A, Zabihi F. Thermal conductivity studies of novel nanofluids based on metallic silver decorated mesoporous silica nanoparticles. Mater Res Bull. 2013;48:4150–6.

    Article  CAS  Google Scholar 

  23. Naraki M, Peyghambarzadeh SM, Hashemabadi SH, Vermahmoudi Y. Parametric study of overall heat transfer coefficient of CuO/water nanofluids in a car radiator. Int J Therm Sci. 2013;66:82–90.

    Article  CAS  Google Scholar 

  24. Saboori R, Sabbaghi S, Barahoei M, Sahooli M. Improvement of thermal conductivity properties of drilling fluid by CuO nanofluid. Transp Phenom Nano Micro Scales. 2017;5(2):97–101.

    Google Scholar 

  25. Saedodin S, Kashefi MH, Bahrami Z. Experimental study on the rheological behavior of nanolubricant-containing MCM-41 nanoparticles with viscosity measurement. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08074-2.

    Article  Google Scholar 

  26. Raja S, Vijayakumar K, Gangadevi R. A comparative study on thermal conductivity of Al2O3/water, CuO/water and Al2O3 – CuO/water nanofluids. Dig J Nanomater Biostruct. 2015;10(4):1449–58.

    Google Scholar 

  27. Kline SJ. Describing uncertainty in single-sample experiments. Mech Eng. 1953;75:3–8.

    Google Scholar 

  28. Nakhjavani M, Nikkhah V, Sarafraz M, Shoja S, Sarafraz M. Green synthesis of silver nanoparticles using green tea leaves: experimental study on the morphological, rheological and antibacterial behaviour. Heat Mass Transf. 2017;53(10):3201–9.

    Article  CAS  Google Scholar 

  29. Nikkhah V, Sarafraz M, Hormozi F. Application of spherical copper oxide (II) water nano-fluid as a potential coolant in a boiling annular heat exchanger. Chem Biochem Eng Q. 2015;29(3):405–15.

    Article  CAS  Google Scholar 

  30. Sarafraz M, Hormozi F, Peyghambarzadeh S, Vaeli N. Upward flow boiling to DI-water and cuo nanofluids inside the concentric annuli. J Appl Fluid Mech. 2015;8(4):651–9.

    Article  Google Scholar 

  31. Sarafraz M, Hormozi F, Silakhori M, Peyghambarzadeh S. On the fouling formation of functionalized and non-functionalized carbon nanotube nano-fluids under pool boiling condition. Appl Therm Eng. 2016;95:433–44.

    Article  CAS  Google Scholar 

  32. Sarafraz M, Nikkhah V, Madani S, Jafarian M, Hormozi F. Low-frequency vibration for fouling mitigation and intensification of thermal performance of a plate heat exchanger working with CuO/water nanofluid. Appl Therm Eng. 2017;121:388–99.

    Article  CAS  Google Scholar 

  33. Sarafraz M, Peyghambarzadeh S, Alavi Fazel S, Vaeli N. Nucleate pool boiling heat transfer of binary nano mixtures under atmospheric pressure around a smooth horizontal cylinder. Period Polytech Chem Eng. 2013;57(1–2):71–7.

    Article  CAS  Google Scholar 

  34. Wang X-Q, Mujumdar AS. Heat transfer characteristics of nanofluids: a review. Int J Therm Sci. 2007;46(1):1–19.

    Article  Google Scholar 

  35. White FM. Fluid mechanics. 7th ed. New York: McGraw-Hill; 2011.

    Google Scholar 

  36. Nooney RI, Thirunavukkarasu D, Chen Y, Josephs R, Ostafin AE. Synthesis of nanoscale mesoporous silica spheres with controlled particle size. Chem Mater. 2002;14(11):4721–8.

    Article  CAS  Google Scholar 

  37. Szegedi Á, Kónya Z, Méhn D, Solymár E, Pál-Borbély G, Horváth ZE, et al. Spherical mesoporous MCM-41 materials containing transition metals: synthesis and characterization. Appl Catal A Gen. 2004;272(1–2):257–66.

    Article  CAS  Google Scholar 

  38. Xu W, Gao Q, Xu Y, Wu D, Sun Y, Shen W, et al. Controllable release of ibuprofen from size-adjustable and surface hydrophobic mesoporous silica spheres. Powder Technol. 2009;191(1):13–20.

    Article  CAS  Google Scholar 

  39. Kulkarni DP, Namburu PK, EdBargar H, Das DK. Convective heat transfer and fluid dynamic characteristics of SiO2 ethylene glycol/water nanofluid. Heat Transf Eng. 2008;29(12):1027–35.

    Article  CAS  Google Scholar 

  40. Manzano M, Aina V, Areán CO, Balas F, Cauda V, Colilla M, et al. Studies on MCM-41 mesoporous silica for drug delivery: effect of particle morphology and amine functionalization. Chem Eng J. 2008;137(1):30–7.

    Article  CAS  Google Scholar 

  41. Cauda V, Schlossbauer A, Bein T. Bio-degradation study of colloidal mesoporous silica nanoparticles: effect of surface functionalization with organo-silanes and poly(ethylene glycol). Microporous Mesoporous Mater. 2010;132(1–2):60–71.

    Article  CAS  Google Scholar 

  42. Sarafraz M, Arjomandi M. Demonstration of plausible application of gallium nano-suspension in microchannel solar thermal receiver: experimental assessment of thermo-hydraulic performance of microchannel. Int Commun Heat Mass Transf. 2018;94:39–46.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would appreciate Semnan University for the financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zohreh Bahrami.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiaee, F.M., Bahrami, Z. & Hormozi, F. Experimental investigation on the thermal performance and new correlation for thermal conductivity of aqueous copper oxide-doped MCM-41 nanofluids. J Therm Anal Calorim 140, 1443–1455 (2020). https://doi.org/10.1007/s10973-019-08832-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08832-2

Keywords

Navigation