Chemico-physical characterization and evaluation of coating properties of two commercial organosilicons

Hydrophase® and Disboxan 450®

Abstract

Two commercial organosilicons, Hydrophase®, a monomeric dispersion, and Disboxan 450®, an oligomeric dispersion, were studied in pure form and applied on acrylic paint replicas. Their physico-chemical characteristics, coating properties, and interaction with acrylic paint replicas were evaluated by TG, DSC, FTIR, and contact angle measurements. Hydrophase® showed a higher interaction when used on the top of acrylic paint replicas than Disboxan 450®. No appreciable modification was detected after two years of natural ageing.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Ammar S, Ramesh K, Vengadaesvaran B, Ramesh S, Arof AK. Amelioration of anticorrosion and hydrophobic properties of epoxy/PDMS composite coatings containing nano ZnO particles. Prog Org Coat. 2016;92:54–65. https://doi.org/10.1016/j.porgcoat.2017.05.012.

    CAS  Article  Google Scholar 

  2. 2.

    Blanco I, Abate L, Bottino FA. Synthesis and thermal behaviour of phenyl-substituted POSSs linked by aliphatic and aromatic bridges. J Therm Anal Calorim. 2018;131(2):843–51. https://doi.org/10.1007/s10973-017-6608-6.

    CAS  Article  Google Scholar 

  3. 3.

    Li J, Zhao Y, Hu J, Shu L, Shi X. Anti-icing performance of a superhydrophobic PDMS/modified nano-silica hybrid coating for insulators. J Adhes Sci Technol. 2012;26(4–5):665–79. https://doi.org/10.1163/016942411X574826.

    CAS  Article  Google Scholar 

  4. 4.

    Kapridaki C, Maravelaki-Kalaitzaki P. TiO2–SiO2–PDMS nano-composite hydrophobic coating with self-cleaning properties for marble protection. Prog Org Coat. 2013;76(2–3):400–10. https://doi.org/10.1016/j.porgcoat.2012.10.006.

    CAS  Article  Google Scholar 

  5. 5.

    Jagdale P, Salimpour S, Islam MH, Cuttica F, Hernandez FCR, Tagliaferro A, et al. Flame retardant effect of nano fillers on polydimethylsiloxane composites. J Nanosci Nanotechnol. 2018;18(2):1468–73. https://doi.org/10.1166/jnn.2018.15251.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Ermakova E, Sysoev S, Nikolaev R, Nikulina L, Lis A, Tsyrendorzhieva I, et al. Thermal properties of some organosilicon precursors for chemical vapor deposition. J Therm Anal Calorim. 2016;126(2):609–16. https://doi.org/10.1007/s10973-016-5563-y.

    CAS  Article  Google Scholar 

  7. 7.

    Witucki GL. A silane primer: chemistry and applications of alkoxy silanes. J Coat Technol. 1993;65:57.

    CAS  Google Scholar 

  8. 8.

    Tsakalof A, Manoudis P, Karapanagiotis I, Chryssoulakis I, Panayiotou C. Assessment of synthetic polymeric coatings for the protection and preservation of stone monuments. J Cult Herit. 2007;8(1):69–72. https://doi.org/10.1016/j.culher.2006.06.007.

    Article  Google Scholar 

  9. 9.

    Eduok U, Faye O, Szpunar J. Recent developments and applications of protective silicone coatings: a review of PDMS functional materials. Prog Org Coat. 2017;111:124–63. https://doi.org/10.1016/j.porgcoat.2017.05.012.

    CAS  Article  Google Scholar 

  10. 10.

    Kahraman MV, Kuğu M, Menceloğlu Y, Kayaman-Apohan N, Güngör A. The novel use of organo alkoxy silane for the synthesis of organic–inorganic hybrid coatings. J Non-Cryst Solids. 2006;352(21–22):2143–51. https://doi.org/10.1016/j.jnoncrysol.2006.02.029.

    CAS  Article  Google Scholar 

  11. 11.

    Li D, Xu F, Liu Z, Zhu J, Zhang Q, Shao L. The effect of adding PDMS-OH and silica nanoparticles on sol–gel properties and effectiveness in stone protection. Appl Surf Sci. 2013;266:368–74. https://doi.org/10.1016/j.apsusc.2012.12.030.

    CAS  Article  Google Scholar 

  12. 12.

    Fermo P, Cappelletti G, Cozzi N, Padeletti G, Kaciulis S, Brucale M, et al. Hydrophobizing coatings for cultural heritage. A detailed study of resin/stone surface interaction. Appl Phys A. 2014;116(1):341–8. https://doi.org/10.1007/s00339-013-8127-z.

    CAS  Article  Google Scholar 

  13. 13.

    Brachaczek W. Comparative analysis of organosilicon polymers of varied chemical composition in respect of their application in silicone-coating manufacture. Prog Org Coat. 2014;77(3):609–15. https://doi.org/10.1016/j.porgcoat.2013.11.026.

    CAS  Article  Google Scholar 

  14. 14.

    Thomas TH, Kendrick T. Thermal analysis of polydimethylsiloxanes. I. Thermal degradation in controlled atmospheres. J Polym Sci Part A 2 Polym Phys. 1969;7(3):537–49. https://doi.org/10.1002/pol.1969.160070308.

    CAS  Article  Google Scholar 

  15. 15.

    Jovanovic JD, Govedarica MN, Dvornic PR, Popovic IG. The thermogravimetric analysis of some polysiloxanes. Polym Degrad Stab. 1998;61(1):87–93. https://doi.org/10.1016/S0141-3910(97)00135-3.

    CAS  Article  Google Scholar 

  16. 16.

    Deshpande G, Rezac ME. The effect of phenyl content on the degradation of poly (dimethyl diphenyl) siloxane copolymers. Polym Degrad Stab. 2001;74(2):363–70. https://doi.org/10.1016/S0141-3910(01)00186-0.

    CAS  Article  Google Scholar 

  17. 17.

    Tomer NS, Delor-Jestin F, Frezet L, Lacoste J. Oxidation, chain scission and cross-linking studies of polysiloxanes upon ageings. Open J Org Polym Mater. 2012;2(02):13. https://doi.org/10.4236/ojopm.2012.22003.

    CAS  Article  Google Scholar 

  18. 18.

    Camino G, Lomakin S, Lazzari M. Polydimethylsiloxane thermal degradation Part 1. Kinetic aspects. Polymer. 2001;42(6):2395–402. https://doi.org/10.1016/S0032-3861(00)00652-2.

    CAS  Article  Google Scholar 

  19. 19.

    Camino G, Lomakin S, Lageard M. Thermal polydimethylsiloxane degradation. Part 2. The degradation mechanisms. Polymer. 2002;43(7):2011–5. https://doi.org/10.1016/S0032-3861(01)00785-6.

    CAS  Article  Google Scholar 

  20. 20.

    Stewart A, Schlosser B, Douglas EP. Surface modification of cured cement pastes by silane coupling agents. ACS Appl Mater Interfaces. 2013;5(4):1218–25. https://doi.org/10.1021/am301967v.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Colombini M, Modugno F, Di Girolamo F, La Nasa J, Duce C, Ghezzi L et al. Keith Haring and the city of the Leaning Tower: preservation of the mural” Tuttomondo”. Conservation Issues in Modern and Contemporary Murals. Cambridge Scholars Publishing; 2015. ISBN 978-1-4438-7233-1.

  22. 22.

    Urzì C, De Leo F. Evaluation of the efficiency of water-repellent and biocide compounds against microbial colonization of mortars. Int Biodeterior Biodegrad. 2007;60(1):25–34. https://doi.org/10.1016/j.ibiod.2006.11.003.

    CAS  Article  Google Scholar 

  23. 23.

    Crisci GM, La Russa MF, Macchione M, Malagodi M, Palermo AM, Ruffolo SA. Study of archaeological underwater finds: deterioration and conservation. Appl Phys A. 2010;100(3):855–63. https://doi.org/10.1007/s00339-010-5661-9.

    CAS  Article  Google Scholar 

  24. 24.

    Stalder AF, Melchior T, Müller M, Sage D, Blu T, Unser M. Low-bond axisymmetric drop shape analysis for surface tension and contact angle measurements of sessile drops. Colloids Surf Physicochem Eng Aspects. 2010;364(1):72–81. https://doi.org/10.1016/j.colsurfa.2010.04.040.

    CAS  Article  Google Scholar 

  25. 25.

    Sun JT, Huang YD, Cao HL, Gong GF. Effects of ambient-temperature curing agents on the thermal stability of poly(methylphenylsiloxane). Polym Degrad Stab. 2004;85(1):725–31. https://doi.org/10.1016/j.polymdegradstab.2004.03.018.

    CAS  Article  Google Scholar 

  26. 26.

    La Nasa J, Orsini S, Degano I, Rava A, Modugno F, Colombini MP. A chemical study of organic materials in three murals by Keith Haring: a comparison of painting techniques. Microchem J. 2016;124:940–8. https://doi.org/10.1016/j.microc.2015.06.003.

    CAS  Article  Google Scholar 

  27. 27.

    Pandele A, Andronescu C, Ghebaur A, Garea S, Iovu H. New biocompatible mesoporous silica/polysaccharide hybrid materials as possible drug delivery systems. Materials. 2019;12(1):15. https://doi.org/10.3390/ma12010015.

    Article  Google Scholar 

  28. 28.

    Catauro M, Tranquillo E, Salzillo A, Capasso L, Illiano M, Sapio L, et al. Silica/Polyethylene glycol hybrid materials prepared by a sol-Gel method and containing chlorogenic acid. Molecules. 2018;23(10):2447. https://doi.org/10.3390/molecules23102447.

    CAS  Article  PubMed Central  Google Scholar 

  29. 29.

    González-Rivera J, Iglio R, Barillaro G, Duce C, Tinè M. Structural and thermoanalytical characterization of 3D porous PDMS foam materials: the effect of impurities derived from a sugar templating process. Polymers. 2018;10(6):616. https://doi.org/10.3390/polym10060616.

    CAS  Article  PubMed Central  Google Scholar 

  30. 30.

    Hofman R, Westheim JGF, Pouwel I, Fransen T, Gellings PJ. FTIR and XPS studies on corrosion-resistant SiO2 coatings as a function of the humidity during deposition. Surf Interface Anal. 1996;24(1):1–6. https://doi.org/10.1002/(SICI)1096-9918(199601)24:1%3c1:AID-SIA73%3e3.0.CO;2-I.

    CAS  Article  Google Scholar 

  31. 31.

    de la Fuente JL, Fernández-García M, López Madruga E. Characterization and thermal properties of poly(n-butyl acrylate-g-styrene) graft copolymers. J Appl Polym Sci. 2001;80(5):783–9. https://doi.org/10.1002/1097-4628(20010502)80:5%3c783:AID-APP1155%3e3.0.CO;2-5.

    Article  Google Scholar 

  32. 32.

    Wang ZY, Liu FC, Han EH, Ke W. Ageing resistance and corrosion resistance of silicone-epoxy and polyurethane topcoats used in sea splash zone. Mater Corros. 2013;64(5):446–53. https://doi.org/10.1002/maco.201106269.

    CAS  Article  Google Scholar 

  33. 33.

    Baudys M, Krýsa J, Zlámal M, Mills A. Weathering tests of photocatalytic facade paints containing ZnO and TiO2. Chem Eng J. 2015;261:83–7. https://doi.org/10.1016/j.cej.2014.03.112.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Financial support of “AGM for CuHe: Advanced Green Materials for Cultural Heritage, Progetto di ricerca industriale e sviluppo sperimentale PNR 2015-2020 Area di Specializzazione Cultural Heritage”, and of “Advanced analytical pyrolysis to study polymers in renewable energy, environment, cultural heritage, Progetto di Ricerca di Ateneo dell’Università di Pisa, PRA_2018_26” is a acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to C. Duce.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3051 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Spepi, A., Pizzimenti, S., Duce, C. et al. Chemico-physical characterization and evaluation of coating properties of two commercial organosilicons. J Therm Anal Calorim 138, 3277–3285 (2019). https://doi.org/10.1007/s10973-019-08830-4

Download citation

Keywords

  • TG-FTIR
  • Differential scanning calorimetry
  • ATR-FTIR
  • Contact angle
  • Organosilicon coatings
  • Hydrophase®
  • Disboxan 450®
  • Acrylic paint coating interactions
  • Natural ageing