Skip to main content
Log in

Characterization of essential oil from Matricaria sevanensis by microwave-assisted distillation

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

A Correction to this article was published on 15 October 2020

This article has been updated

Abstract

Matricaria sevanensis is a widespread plant species grown in Central Anatolian and helps to prevent sleep disorders, influenza and stomach upsets when consumed in tea form. In this study, the essential oil from aerial parts of M. sevanensis collected from Osmaniye Province of Turkey was obtained by solvent-free microwave-assisted distillation at 340 W in 30 min and its chemical compounds, some thermal characteristics, functional groups and antioxidant activity were investigated by gas chromatography/mass spectrometry (GC/MS), differential scanning calorimetry (DSC), Fourier-transform infrared (FTIR) spectroscopy and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay, respectively. Also, temperature values were recorded in every 5 min of distillation process in order to visualize a profile depending on time. Oil yield was nearly 0.04% (v/w), and eighteen components were totally identified by GC/MS. Bisabolene oxide A (50.32%), (Z)-β-farnesene (24.20%), α-bisabolol oxide A (8.12%) and α-farnesene (4.06%) were found as major compounds. Three peaks were observed in DSC graph, and onset temperatures (To), peak temperatures (Tp) and enthalpy (ΔH) values were specified. FTIR spectra showed that several functional groups such as alcohols, alkanes, aromatics, amines and ethers were present in essential oil. Antioxidant activity (IC50) of M. sevanensis essential oil was also computed as 156.005 µg mL−1 (p < 0.05).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

  • 15 October 2020

    In the original publication of the article, peak numbers were not given in figure 4. The corrected figure 4 is given below.

References

  1. Davis PH. Flora of Turkey and the East Aegean Islands. Edinburgh: Edinburgh University Press; 1975.

    Google Scholar 

  2. Anonymous. The Plant list–A working list for all plant species. 2013. http://www.theplantlist.org Accessed 01 June 2018.

  3. Anonymous. The International plant names index. 2015. http://www.ipni.org Accessed 01 June 2018.

  4. Ceter T, Pinar NM, Inceer H, Hayirlioglu-Ayaz S, Yaprak AE. The comparative pollen morphology of genera Matricaria L. and Tripleurospemum Sch. Bip. (Asteraceae) in Turkey. Plant Syst Evol. 2013;299:959–77.

    Google Scholar 

  5. Himmelreich S, Kallersjo M, Eldenas P, Oberprieler C. Phylogeny of southern hemisphere Compositae-Anthemideae based on nrDNA ITS and cpDNA ndhF sequence information. Plant Syst Evol. 2008;272:131–53.

    CAS  Google Scholar 

  6. Motavalizadehkakhky A. Antimicrobial activity and chemical composition of essential oils of chamomile from Neyshabur. Iran J Med Plants Res. 2012;6(5):820–4.

    Google Scholar 

  7. Duce C, Vecchio Ciprioti S, Spepi A, Bernazzani L, Tinè MR. Vaporization kinetic study of lavender and sage essential oils. J Therm Anal Calorim. 2017;130(1):595–604.

    CAS  Google Scholar 

  8. Owlia P, Rasooli I, Saderi H. Antistreptoccal and antioxidant activity of essential oil from Matricaria chamomilla L. Res J Biol Sci. 2007;2(2):155–60.

    Google Scholar 

  9. Shams-Ardakani M, Ghannadi A, Rahimzadeh A. Volatile constituents of Matricaria chamomilla L. from Isfahan, Iran. Iran J Pharm Sci. 2006;2(1):57–60.

    Google Scholar 

  10. Javidnia K, Miri R, Soltani M, Khosravi AR. Essential oil composition of Tripleurospermum disciforme from Iran. Chem Nat Compd. 2008;44(6):800–1.

    CAS  Google Scholar 

  11. Abdoul-Latif FM, Mohamed N, Edou P, Ali AA, Djama SO, Obame LC, Bassolé IHN, Dicko MH. Antimicrobial and antioxidant activities of essential oil and methanol extract of Matricaria chamomilla L. from Djibouti. J Med Plants Res. 2011;5(9):1512–7.

    Google Scholar 

  12. Singh O, Khanam Z, Misra N, Srivastava MK. Chamomile (Matricaria chamomilla L): an overview. Pharmacognosy Rev. 2011;5(9):82–95.

    CAS  Google Scholar 

  13. Jamalian A, Shams-Ghahfarokhi M, Jaimand K, Pashootan N, Amani A, Razzaghi-Abyaneh M. Chemical composition and antifungal activity of Matricaria recutita flower essential oil against medically important dermatophytes and soil-borne pathogens. J Mycol Méd. 2012;22:308–15.

    CAS  PubMed  Google Scholar 

  14. Farhoudi R. Chemical constituents and antioxidant properties of Matricaria recutita and Chamaemelum nobile essential oil growing wild in the South West of Iran. J Essent Oil Bearing Plants. 2013;16(4):531–7.

    CAS  Google Scholar 

  15. Mekonnen A, Yitayew A, Tesema A, Taddese S. In vitro antimicrobial activity of essential oil of Thymus schimperi, Matricaria chamomilla, Eucalyptus globulus, and Rosmarinus officinalis. Int J Microbiol. 2016;1:1–8.

    Google Scholar 

  16. Chehregani A, Mohsenzadeh F, Mirazi N, Hajisadeghian S, Baghali Z. Chemical composition and antibacterial activity of essential oils of Tripleurospermum disciforme in three developmental stage. Pharma Biol. 2010;48(11):1280–4.

    CAS  Google Scholar 

  17. Ozturk E, Ozer H, Cakır A, Mete E, Kandemir A, Polat T. Chemical composition of the essential oil of Tripleurospermum corymbosum E. Hossain, an endemic species from Turkey. J Essent Oil Bearing Plants. 2010;13(2):148–53.

    CAS  Google Scholar 

  18. Chemat F, Lucchesi M. Microwaves in organic synthesis. Weinheim: Wiley; 2006.

    Google Scholar 

  19. Movagharnejad K, Vahdatkhoram F, Nanvakenari S. Optimization of microwave and infrared drying process of nettle leaves using design of experiments. J Therm Anal Calorim. 2018;135(3):1–9.

    Google Scholar 

  20. Surendhar A, Sivasubramanian V, Vidhyeswari D, Deepanraj B. Energy and exergy analysis, drying kinetics, modeling and quality parameters of microwave-dried turmeric slices. J Therm Anal Calorim. 2019;136:185–97.

    CAS  Google Scholar 

  21. Thiebaut IAPL, Colin J, Roussy P. Microwave enhancement of evaporation of a polar liquid. 1. J Therm Anal Calorim. 1983;28:37–47.

    CAS  Google Scholar 

  22. Singh S, Gaikwad KK, Lee M, Lee YS. Microwave-assisted micro-encapsulation of phase change material using zein for smart food packaging applications. J Therm Anal Calorim. 2018;131(3):2187–95.

    CAS  Google Scholar 

  23. Li Y, Fabiano-Tixier AS, Vian MA, Chemat F. Solvent-free microwave extraction of bioactive compounds provides a tool for green analytical chemistry. Trends in Anal Chem. 2013;47:1–11.

    Google Scholar 

  24. Santos JCO, Santos MGO, Dantas JP, Conceicao MM, Athaide-Filho PF, Souza AG. Comparative study of specific heat capacities of some vegetable oils obtained by DSC and microwave oven. J Therm Anal Calorim. 2009;79:283–7.

    Google Scholar 

  25. Siew WL. Crystallisation and melting behaviour of palm kernel oil and related products by differential scanning calorimetry. Eur J Lipid Sci Technol. 2001;103:729–34.

    CAS  Google Scholar 

  26. Santos AL, Chierice GO, Alexander KS, Riga A, Matthews E. Characterization of the raw essential oil eugenol extracted from Syzygium aromaticum L. J Therm Anal Calorim. 2009;96(3):821–5.

    CAS  Google Scholar 

  27. Sidi-Yacoub B, Oudghiri F, Belkadi M, Rodríguez-Barroso R. Characterization of lignocellulosic components in exhausted sugar beet pulp waste by TG/FTIR analysis. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08179-8.

    Article  Google Scholar 

  28. Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol. 2004;55:373–99.

    CAS  PubMed  Google Scholar 

  29. Jiménez-Zamora A, Delgado-Andrade C, Rufián-Henares JA. Antioxidant capacity, total phenols and color profile during the storage of selected plants used for infusion. Food Chem. 2016;199:339–46.

    PubMed  Google Scholar 

  30. Shah MA, Bosco SJD, Mir SA. Plant extracts as natural antioxidants in meat and meat products. Meat Sci. 2014;98(1):21–33.

    CAS  PubMed  Google Scholar 

  31. Zeljkovic SC, Ayazb FA, Inceer H, Hayirlioglu-Ayaz S, Colak N. Evaluation of chemical profile and antioxidant activity of Tripleurospermum insularum, a new species from Turkey. Nat Prod Res. 2015;29(3):293–6.

    Google Scholar 

  32. Mandegary A, Soodi M, Sharififar F, Ahmadi S. Anticholinesterase, antioxidant, and neuroprotective effects of Tripleurospermum disciforme and Dracocephalum multicaule. J Ayurveda Integr Med. 2014;5(3):162–6.

    PubMed  PubMed Central  Google Scholar 

  33. Chen WT, Chen WC, Ma CM, Laiwang B, Shen SJ, You ML, Shu CM. Structural characteristics and decomposition analyses of four commercial essential oils by thermal approaches and GC/MS. J Therm Anal Calorim. 2018;131(2):1709–19.

    CAS  Google Scholar 

  34. Zhang L, Hu Y, Duan X, Tang T, Shen Y, Hu B, Liu A, Chen H, Cheng L, Liu Y. Characterization and antioxidant activities of polysaccharides from thirteen Boletus mushrooms. Int J Biol Macromol. 2018;113:1–7.

    CAS  PubMed  Google Scholar 

  35. Raal A, Kaur H, Orav A, Arak E, Kailas T, Müürisepp M. Content and composition of essential oils in some Asteraceae species. Proc Estonian Acad Sci. 2011;60(1):55–63.

    CAS  Google Scholar 

  36. Bekele M. Phytochemical investigation of Matricaria maritima. University of Alberta, M.Sc. Thesis; 1995.

  37. Pirzad A, Alyari H, Shakiba MR, Zehtab-Salmasi S, Mohammadi A. Essential oil content composition of German chamomille (Matricaria chamomilla L.) at different irrigation regimes. J Agron. 2006;5(3):451–5.

    Google Scholar 

  38. Süfer Ö, Palazoğlu TK. Microwave–vacuum drying of pomegranate arils (Punica granatum L.cv. Hicaznar): Effect on quality and nutrient content. J Food Process Preserv. 2019;43(9):e14085.

    Google Scholar 

  39. Zielinska M, Zielinska D. Effects of freezing, convective and microwave-vacuum drying on the content of bioactive compounds and color of cranberries. LWT Food Sci Tech. 2019;104:202–9.

    CAS  Google Scholar 

  40. Wu X, Zhang M, Li Z. Influence of infrared drying on the drying kinetics, bioactive compounds and flavor of Cordyceps militaris. LWT Food Sci Tech. 2019;111:790–8.

    CAS  Google Scholar 

  41. Lim HK, Tan CP, Karim R, Ariffin AA, Bakar J. Chemical composition and DSC thermal properties of two species of Hylocereus cacti seed oil: Hylocereus undatus and Hylocereus polyrhizus. Food Chem. 2010;119(4):1326–31.

    CAS  Google Scholar 

  42. Samyn P, Schoukens G, Vonck L, Stanssens D, Van Den Abbeele H. Quality of Brazilian vegetable oils evaluated by (modulated) differential scanning calorimetry. J Therm Anal Calorim. 2012;110(3):1353–65.

    CAS  Google Scholar 

  43. Hasani S, Ojagh SM, Ghorbani M. Nanoencapsulation of lemon essential oil in Chitosan-Hicap system. Part 1: Study on its physical and structural characteristics. Int J Biol Macromol. 2018; 115: 143–151.

  44. Baba G, Lawal AO, Shariff HB. Mosquito repellent activity and phytochemical characterization of essential oils from Striga hermonthica, Hyptis spicigera and Ocimum basilicum leaf extracts. Br J Pharmacol Toxicol. 2012;3(2):43–8.

    CAS  Google Scholar 

  45. Hasheminya SM, Mokarram RR, Ghanbarzadeh B, Hamishekar H, Kafil HS, Dehghannya J. Development and characterization of biocomposite films made from kefiran, carboxymethyl cellulose and Satureja Khuzestanica essential oil. Food Chem. 2019;289:443–52.

    CAS  PubMed  Google Scholar 

  46. Hosseini SF, Rezaei M, Zandi M, Farahmandghavi F. Bio-based composite edible films containing Origanum vulgare L. essential oil. Ind Crops Prod. 2015; 67: 403–413.

  47. Sheny DS, Mathew J, Philip D. Synthesis characterization and catalytic action of hexagonal gold nanoparticles using essential oils extracted from Anacardium occidentale. Spectrochim Acta Part A Mol Biomol Spectrosc. 2012;97:306–10.

    CAS  Google Scholar 

  48. Li YQ, Kong DX, Wu H. Analysis and evaluation of essential oil components of cinnamon barks using GC-MS and FTIR spectroscopy. Ind Crops Prod. 2013;41(1):269–78.

    CAS  Google Scholar 

  49. Sharififar F, Ahmadi S, Mandegary A, Soodi M. Anticholinesterase, antioxidant, and neuroprotective effects of Tripleurospermum disciforme and Dracocephalum multicaule. J Ayurveda & Integr Med. 2014;5(3):162.

    Google Scholar 

  50. Snoussi A, Chaabouni MM, Bouzouita N, Kachouri F. Chemical composition and antioxidant activity of Myrtus communis L. floral buds essential oil. J Essent Oil Res. 2011; 23(2): 10–14.

  51. Dahham SS, Tabana YM, Iqbal MA, Ahamed MBK, Ezzat MO, Majid ASA, Majid AMSA. The anticancer, antioxidant and antimicrobial properties of the sesquiterpene β-caryophyllene from the essential oil of Aquilaria crassna. Mol. 2015;20(7):11808–29.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors declare no conflict of interest. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Özge Süfer.

Ethics declarations

Conflict of interest

The authors declare that they no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Süfer, Ö., Bozok, F. Characterization of essential oil from Matricaria sevanensis by microwave-assisted distillation. J Therm Anal Calorim 140, 253–261 (2020). https://doi.org/10.1007/s10973-019-08829-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08829-x

Keywords

Navigation