Skip to main content
Log in

Numerical analysis of sinusoidal and step pulse velocity effects on an impinging jet quenching process

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this paper, a numerical simulation of jet impingement quenching is provided. The VOF method in the basic solver of the OpenFOAM CFD package is developed to simulate boiling and condensation phenomena. In simulations, surface tension and mass transfer between two phases were modeled with continuous surface force (CSF) model and Lee mass transfer model, respectively, and energy equation was solved in the solid region. Numerical simulation of jet impingement quenching process is validated by experimental data and a good agreement is observed. The effects of pulsating jet velocity and step jet velocity on quenching process are studied, and parameters such as temporal and spatial variation of solid part temperature and standard temperature uniformity index (STUI) are investigated. The effects of frequency and amplitude of sinusoidal single jet and also the period of two jets with step pulse are investigated. The results revealed that using two jets with step velocity profile leads to the best performance or least uniformity index (best temperature distribution) among the considered cases. Studying the maximum temperature difference inside the solid region indicated that for pulse flows this parameter is considerably lower than the continuous flows. Also, at a constant flow rate, 43% reduction in STUI is achieved by sinusoidal pulsating jet compared to the single continuous jet, while 66% STUI reduction was reached for two-jet cases. These substantial reductions in uniformity index present these methods as promising approaches for the quenching process in various industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Abbreviations

A :

Jet inlet area (m2)

A oc :

Oscillating amplitude

\(C_{\alpha }\) :

Compression factor

C p :

Specific heat (J kg−1K−1)

f :

Frequency (Hz)

g :

Gravity acceleration (m s−2)

H LG :

Latent heat of evaporation (J kg−1)

K :

Thermal conductivity (W m−2K−1)

\(\Delta m\) :

Mass difference (kg)

\(\dot{m}^{\prime\prime\prime}\) :

Condensate or evaporate mass flow rate per unit volume (kg m−3s−1)

n st :

Step counter

p :

Pressure (Pa)

r e :

Evaporation mass transfer time relaxation parameter (s−1)

r c :

Condensation mass transfer time relaxation parameter (s−1)

STUI:

Standard temperature uniformity index

T :

Temperature (K)

T w :

Wall temperature (K)

T oc :

Oscillation period (s)

T st :

Step period (s)

\(\Delta T\) :

Temperature difference (K)

\(\Delta t\) :

Time difference (s)

\(\vec{U}_{\text{r}}\) :

Vapor and liquid relative velocity (m s−1)

\(\vec{U}_{\text{ref}}\) :

Reference velocity (m s−1)

\(\Delta u\) :

Velocity difference (m s−1)

\(\vec{U}\) :

Velocity vector (m s−1)

V :

Cell volume (m3)

W :

Width (m)

\(\alpha\) :

Volume fraction factor

\(\alpha_{\text{t}}\) :

Thermal diffusivity (m2 s−1)

\(\kappa\) :

Interface curvature (m−1)

\(\mu\) :

Dynamic viscosity (Pa s)

\(\rho\) :

Density (kg m−3)

\(\sigma\) :

Surface tension (N m−1)

ave:

Average

f:

Fluid

fa:

Cell face

G:

Gas

i:

Number of sub-cycles

L:

Liquid

n:

Normal to surface

s:

Solid

sat:

Saturation

sc:

Sub-cycle

References

  1. Mujumdar AS. 15 Impingement Drying. In: Handbook of Industrial Drying. 2014:371.

  2. Banooni S, Hosseinalipour SM, Mujumdar AS, Taherkhani P, Bahiraei M. Baking of flat bread in an impingement oven: modeling and optimization. Drying Technol. 2009;27(1):103–12. https://doi.org/10.1080/07373930802565954.

    Article  Google Scholar 

  3. Banooni S, Hosseinalipour SM, Mujumdar AS, Taheran E, Bahiraei M, Taherkhani P. Baking of flat bread in an impingement oven: an experimental study of heat transfer and quality aspects. Drying Technol. 2008;26(7):902–9. https://doi.org/10.1080/07373930802142614.

    Article  Google Scholar 

  4. Karwa N, Stephan P, editors. Jet impingement quenching: effect of coolant accumulation. Journal of Physics: Conference Series; 2012: IOP Publishing.

  5. Chen C, Lin T, Yan W-M, Amani M. Time periodic evaporation heat transfer of R-134a in a narrow annular duct due to mass flow rate oscillation. Int J Heat Mass Transf. 2018;118:154–64.

    Article  CAS  Google Scholar 

  6. Chen C, Lin T, Yan W-M. Experimental study on time periodic evaporation heat transfer of R-134a in annular ducts due to wall heat flux oscillation. Int J Heat Mass Transf. 2017;106:1232–41.

    Article  CAS  Google Scholar 

  7. Chen C, Lin T, Yan W-M. Time periodic saturated flow boiling heat transfer of R-134a in a narrow annular duct due to heat flux oscillation. Int J Heat Mass Transf. 2017;106:35–46.

    Article  CAS  Google Scholar 

  8. Wang Y-H, Wang S-Y, Lu G, Wang X-D. Effects of wettability on explosive boiling of nanoscale liquid films: whether the classical nucleation theory fails or not? Int J Heat Mass Transf. 2019;132:1277–83.

    Article  CAS  Google Scholar 

  9. Wang Y-H, Wang S-Y, Lu G, Wang X-D. Explosive boiling of nano-liquid argon films on high temperature platinum walls: effects of surface wettability and film thickness. Int J Therm Sci. 2018;132:610–7.

    Article  CAS  Google Scholar 

  10. Qiu L, Dubey S, Choo FH, Duan F. Recent developments of jet impingement nucleate boiling. Int J Heat Mass Transf. 2015;89:42–58.

    Article  Google Scholar 

  11. Gradeck M, Kouachi A, Lebouché M, Volle F, Maillet D, Borean J-L. Boiling curves in relation to quenching of a high temperature moving surface with liquid jet impingement. Int J Heat Mass Transf. 2009;52(5–6):1094–104.

    Article  CAS  Google Scholar 

  12. Karwa N, Gambaryan-Roisman T, Stephan P, Tropea C. Experimental investigation of circular free-surface jet impingement quenching: transient hydrodynamics and heat transfer. Exp Therm Fluid Sci. 2011;35(7):1435–43.

    Article  CAS  Google Scholar 

  13. Agrawal C, Kumar R, Gupta A, Chatterjee B. Effect of jet diameter on the rewetting of hot horizontal surfaces during quenching. Exp Therm Fluid Sci. 2012;42:25–37.

    Article  Google Scholar 

  14. Agrawal C, Kumar R, Gupta A, Chatterjee B. Determination of rewetting velocity during jet impingement cooling of a hot surface. J Therm Sci Eng Appl. 2013;5(1):011007.

    Article  Google Scholar 

  15. Narumanchi S, Troshko A, Bharathan D, Hassani V. Numerical simulations of nucleate boiling in impinging jets: applications in power electronics cooling. Int J Heat Mass Transf. 2008;51(1):1–12.

    Article  CAS  Google Scholar 

  16. Waldeck S, Woche H, Specht E, Fritsching U. Evaluation of heat transfer in quenching processes with impinging liquid jets. Int J Therm Sci. 2018;134:160–7.

    Article  Google Scholar 

  17. Vakili S, Gadala MS. Boiling heat transfer of multiple impinging jets on a hot moving plate. Heat Transf Eng. 2013;34(7):580–95.

    Article  CAS  Google Scholar 

  18. Lee J, Son G, Yoon HY. Numerical simulation of the quenching process in liquid jet impingement. Int Commun Heat Mass Transf. 2015;61:146–52.

    Article  Google Scholar 

  19. Ghasemian M, Ramiar A, Ranjbar AA. Numerical investigation of boiling heat transfer in a quenching process of jet impingement considering solid temperature distribution. J Therm Anal Calorim. 2019;136(6):2409–20.

    Article  CAS  Google Scholar 

  20. El-Nasar A. Heat transfer characteristics of horizontal cylinder cooling under single impinging water jet. Int J Appl Sci Eng Res 2012.

  21. Toghraie D. Numerical thermal analysis of water’s boiling heat transfer based on a turbulent jet impingement on heated surface. Physica E. 2016;84:454–65.

    Article  CAS  Google Scholar 

  22. Dobbertean MM, Rahman MM. Numerical analysis of steady state heat transfer for jet impingement on patterned surfaces. Appl Therm Eng. 2016;103:481–90.

    Article  Google Scholar 

  23. Sen S, Aksakal B, Ozel A. Transient and residual thermal stresses in quenched cylindrical bodies. Int J Mech Sci. 2000;42(10):2013–29.

    Article  Google Scholar 

  24. Ghasemian M, Ranjbar AA, Ramiar A. Heat transfer and uniformity enhancement in quenching process of multiple impinging jets with Newtonian and non-Newtonian quenchants. Int J Therm Sci. 2019;142:220–32.

    Article  Google Scholar 

  25. Rusche H. Computational fluid dynamics of dispersed two-phase flows at high phase fraction-Ph. D. thesis, Imperial College of Science, Technology and Medicine, London, 2002.

  26. Klostermann J, Schaake K, Schwarze R. Numerical simulation of a single rising bubble by VOF with surface compression. Int J Numer Methods Fluids. 2013;71(8):960–82.

    Article  CAS  Google Scholar 

  27. Samkhaniani N, Ansari M. Numerical simulation of bubble condensation using CF-VOF. Prog Nucl Energy. 2016;89:120–31.

    Article  CAS  Google Scholar 

  28. Bahreini M, Ramiar A, Ranjbar AA. Numerical simulation of bubble behavior in subcooled flow boiling under velocity and temperature gradient. Nucl Eng Des. 2015;293:238–48.

    Article  CAS  Google Scholar 

  29. Brackbill JU, Kothe DB, Zemach C. A continuum method for modeling surface tension. J Comput Phys. 1992;100(2):335–54.

    Article  CAS  Google Scholar 

  30. Lee W. A pressure iteration scheme for two-phase flow modeling (Technical Paper No. LA-UR-79-975). Los Alamos, New Mexico, USA: Los Alamos National Laboratory. 1979.

  31. De Schepper SC, Heynderickx GJ, Marin GB. CFD modeling of all gas–liquid and vapor–liquid flow regimes predicted by the Baker chart. Chem Eng J. 2008;138(1–3):349–57.

    Article  Google Scholar 

  32. Alizadehdakhel A, Rahimi M, Alsairafi AA. CFD modeling of flow and heat transfer in a thermosyphon. Int Commun Heat Mass Transf. 2010;37(3):312–8.

    Article  CAS  Google Scholar 

  33. Yang Z, Peng X, Ye P. Numerical and experimental investigation of two phase flow during boiling in a coiled tube. Int J Heat Mass Transf. 2008;51(5–6):1003–16.

    Article  CAS  Google Scholar 

  34. Bahreini M, Ramiar A, Ranjbar A. Numerical simulation of subcooled flow boiling under conjugate heat transfer and microgravity condition in a vertical mini channel. Appl Therm Eng. 2017;113:170–85.

    Article  CAS  Google Scholar 

  35. Hirt CW, Nichols BD. Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys. 1981;39(1):201–25.

    Article  Google Scholar 

  36. Shu B, Dammel F, Stephan P, editors. Phase change model for two-phase fluid flow based on the volume of fluid method. ICHMT Digital Library Online; 2008: Begel House Inc.

  37. Welch SW, Wilson J. A volume of fluid based method for fluid flows with phase change. J Comput Phys. 2000;160(2):662–82.

    Article  Google Scholar 

  38. Ramezanzadeh H, Ramiar A, Yousefifard M. Numerical investigation into coolant liquid velocity effect on forced convection quenching process. Appl Therm Eng. 2017;122:253–67.

    Article  CAS  Google Scholar 

  39. Bahreini M, Ramiar A, Ranjbar AA. Development of a phase change model for volume-of-fluid method in OpenFOAM. J Heat Mass Transf Res. 2016;3(2):131–43.

    Google Scholar 

  40. Karwa N, Stephan P. Experimental investigation of free-surface jet impingement quenching process. Int J Heat Mass Transf. 2013;64:1118–26.

    Article  CAS  Google Scholar 

  41. Rahimi M, Owen I, Mistry J. Thermal stresses in boiler tubes arising from high-speed cleaning jets. Int J Mech Sci. 2003;45(6–7):995–1009.

    Article  Google Scholar 

  42. Huang Z, Zhu H, Yan R, Wang S. Simulation and prediction of radio frequency heating in dry soybeans. Biosyst Eng. 2015;129:34–47.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abas Ramiar or Mehran Ghasemian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramezanzadeh, H., Ramiar, A., Yousefifard, M. et al. Numerical analysis of sinusoidal and step pulse velocity effects on an impinging jet quenching process. J Therm Anal Calorim 140, 331–349 (2020). https://doi.org/10.1007/s10973-019-08828-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08828-y

Keywords

Navigation