Skip to main content
Log in

Experimental design for estimation of the distribution of the convective heat transfer coefficient for a bubbly impinging jet

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, a two-dimensional inverse algorithm is developed to determine the heat transfer coefficient distribution of a two-phase air–water bubbly jet impinging on a steel cylindrical thermal mass. All procedures of thermal mass heating and cooling are simulated by solving two-dimensional, transient heat conduction equations using finite difference method. Afterward, the nonlinear inverse heat conduction problem is implemented to directly predict the local convective heat transfer coefficient of the bubbly jet. The sum of squared differences between calculated and measured temperature data is the objective function. Conjugate gradient method is employed sequentially in every time step to optimize the objective function at four gas Reynolds numbers which represent four different two-phase jets. The inverse scheme is validated using exact temperature data without noise. Local heat transfer coefficients are then estimated by inverse technique at five data acquisition times and four initial temperatures of thermal mass in the presence of noise. Furthermore, the effects of uncertainties due to indefinite lateral boundary conditions, temperature dependency of thermal conductivity, and the non-uniformity of the initial temperature distribution are investigated. A satisfactory agreement between exact and estimated heat transfer coefficients is achieved. However, the results show a greater sensitivity to the highest value of initial temperature, the shortest data acquisition time, and the lowest gas Reynolds number allowing a better estimation of heat transfer distribution for the bubbly jet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

CGM:

Conjugate gradient method

\(C_{\rm P}\) :

Heat capacity (J kg−1 K−1)

\(d\) :

Nozzle tube diameter (m)

D :

Thermal mass diameter (m)

DAT:

Data acquisition time (s)

E :

Error

\(h\) :

Heat transfer coefficient (W m−2 K−1)

\(H\) :

Nozzle-to-target spacing (m)

\(H_{\rm h}\) :

Heater thickness (m)

\(H_{_{\rm ins}}\) :

Insulation thickness (m)

\(H_{\rm s}\) :

Steel thermal mass thickness (m)

IHCP:

Inverse heat conduction problem

\(k\) :

Thermal conductivity (W m−1 K)

\(Nu\) :

Nusselt number (hd/kL)

\(q^{\prime\prime}\) :

Heat flux (W m−2)

\(r\) :

Radial distance from stagnation point (m)

\(Re\) :

Reynolds number (ρvd/µ)

S:

Sensor

\(S\) :

Sum of squared errors (K2)

\(\vec{S}\) :

Search direction

\(t\) :

Time (s)

\(T\) :

Temperature (K)

\(T_{\rm i}\) :

Initial temperature (K)

\(T_{\infty }\) :

Surrounding temperature (K)

\(Y\) :

Measured temperature (K)

\(z\) :

Vertical distance from stagnation point (m)

\(Z\) :

Sensitivity coefficient (m2 K2 W−1)

b:

Bottom

e:

End

f:

Final

G:

Gas

i:

Number of iterations

ins:

Insulation

j:

Jet

L:

Liquid

meas:

Measured

p:

Peripheral

rms:

Root mean square

s:

Steel

t:

Top

\(\alpha\) :

Thermal diffusivity (m2 s−1)

\(\gamma\) :

Conjugate coefficient

\(\lambda\) :

Step size

\({\rho }\) :

Density (kg m−3)

\(\sigma\) :

Standard deviation

References

  1. Jambunathan K, Lai E, Moss MA, Button BL. A review of heat transfer data for single circular jet impingement. Int J Heat Fluid Flow. 1992;13(2):106–15.

    Article  CAS  Google Scholar 

  2. Livingood JN, Hrycak P. Impingement heat transfer from turbulent air jets to flat plates: a literature survey. NASA Tech. Note; 1973

  3. Webb BW, Ma CF. Single-phase liquid jet impingement heat transfer. Adv Heat Transf. 1995;26:105–217.

    Article  CAS  Google Scholar 

  4. Agrawal C. Surface quenching by jet impingement: a review. Steel Res Int. 2019;90(1):1800285.

    Article  Google Scholar 

  5. Zumbrunnen DA, Balasubramanian M. Convective heat transfer enhancement due to gas injection into an impinging liquid jet. J Heat Transf. 1995;117(4):1011–7.

    Article  CAS  Google Scholar 

  6. Kakumoto T, Tomemori H, Horiki S, Osakabe M. Cooling characteristics of two-phase impinging jets, vol. 369. New York: ASME-PUBLICATIONS-HTD; 2001. p. 167–78.

    Google Scholar 

  7. Choo K, Kim SJ. Heat transfer and fluid flow characteristics of two-phase impinging jets. Int J Heat Mass Transf. 2010;53(25–26):5692–9.

    Article  Google Scholar 

  8. Trainer D, Kim J, Kim SJ. Heat transfer and flow characteristics of air-assisted impinging water jets. Int J Heat Mass Transf. 2013;64:501–13.

    Article  Google Scholar 

  9. Agrawal C, Lyons OF, Kumar R, Gupta A, Murray DB. Rewetting of a hot horizontal surface through mist jet impingement cooling. Int J Heat Mass Transf. 2013;58(1–2):188–96.

    Article  CAS  Google Scholar 

  10. Friedrich BK, Glaspell AW, Choo K. The effect of volumetric quality on heat transfer and fluid flow characteristics of air-assistant jet impingement. Int J Heat Mass Transf. 2016;101:261–6.

    Article  Google Scholar 

  11. Mohaghegh MR, Rahimi AB. Single-and two-phase water jet impingement heat transfer on a hot moving surface. J Therm Anal Calorim. 2019;12:1–1.

    Google Scholar 

  12. Hadamard J, Morse PM. Lectures on Cauchy’s problem in linear partial differential equations. Phys Today. 1953;6:18.

    Article  Google Scholar 

  13. Tikhonov AN. Solution of incorrectly formulated problems and the regularization method. Sov Math. 1963;4:1035–8.

    Google Scholar 

  14. Tikhonov AN. Inverse problems in heat conduction. J Eng Phys Thermophys. 1975;29(1):816–20.

    Article  Google Scholar 

  15. Alifanov OM. Solution of an inverse problem of heat conduction by iteration methods. J Eng Phys Thermophys. 1974;26(4):471–6.

    Article  Google Scholar 

  16. Alifanov OM. Inverse heat transfer problems. Berlin: Springer; 2012.

    Google Scholar 

  17. Beck JV, Blackwell B, Clair CR Jr. Inverse heat conduction: Ill-posed problems. Fairfield: James Beck; 1985.

    Google Scholar 

  18. Hestsenes MR, Stiefel E. Methods of conjugate gradients for solving linear equations. J Res Natl Bur Stand. 1952;49:409–36.

    Article  Google Scholar 

  19. Fletcher R, Reeves CM. Function minimization by conjugate gradients. Comput J. 1964;7(2):149–54.

    Article  Google Scholar 

  20. Huang CH, Özisik MN. Inverse problem of determining unknown wall heat flux in laminar flow through a parallel plate duct. Numer Heat Transf. 1992;21(1):55–70.

    Article  Google Scholar 

  21. Huang CH, Chen WC. A three-dimensional inverse forced convection problem in estimating surface heat flux by conjugate gradient method. Int J Heat Mass Transf. 2000;43(17):3171–81.

    Article  Google Scholar 

  22. Colaco MJ, Orlande HR. Inverse forced convection problem of simultaneous estimation of two boundary heat fluxes in irregularly shaped channels. Numer Heat Transf Part A Appl. 2001;39(7):737–60.

    Article  CAS  Google Scholar 

  23. Ozisik MN, Orlande RBH. Inverse heat transfer. Boca Raton: Taylor and Francis; 2000.

    Google Scholar 

  24. Taler J, Duda P. Solving direct and inverse heat conduction problems. Berlin: Springer; 2010.

    Google Scholar 

  25. Anderson BA, Singh RP. Effective heat transfer coefficient measurement during air impingement thawing using an inverse method. Int J Refrig. 2006;29(2):281–93.

    Article  CAS  Google Scholar 

  26. Sagheby SH, Kowsary F. Experimental design and methodology for estimation of local heat transfer coefficient in jet impingement using transient inverse heat conduction problem. Exp Heat Transf. 2009;22(4):300–15.

    Article  Google Scholar 

  27. Mobtil M, Bougeard D, Solliec C. Inverse determination of convective heat transfer between an impinging jet and a continuously moving flat surface. Int J Heat Fluid Flow. 2014;50:83–94.

    Article  CAS  Google Scholar 

  28. Forouzanmehr M, Shariatmadar H, Kowsary F, Ashjaee M. Achieving heat flux uniformity using an optimal arrangement of impinging jet arrays. J Heat Transf. 2015;137(6):061002.

    Article  Google Scholar 

  29. Farahani SD, Bijarchi MA, Kowsary F, Ashjaee M. Optimization arrangement of two pulsating impingement slot jets for achieving heat transfer coefficient uniformity. J Heat Transf. 2016;138(10):102001.

    Article  Google Scholar 

  30. Liu T, Montefort J, Stanfield S, Palluconi S, Crafton J, Cai Z. Analytical inverse heat transfer method for temperature-sensitive-coating measurement on a finite base. Int J Heat Mass Transf. 2018;118:651–62.

    Article  Google Scholar 

  31. Bergman TL, Incropera FP, Lavine AS, DeWitt DP. Introduction to heat transfer. Hoboken: Wiley; 2011.

    Google Scholar 

  32. Touloukian YS, Powell RW, Ho CY, Klemens PG. Thermophysical properties of matter-the TPRC data series. Volume 1. Thermal conductivity-metallic elements and alloys. Thermophysical and electronic properties information analysis Center Lafayette In; 1970.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farshad Kowsary.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kowsary, F., Razzaghi, H. & Ashjaee, M. Experimental design for estimation of the distribution of the convective heat transfer coefficient for a bubbly impinging jet. J Therm Anal Calorim 140, 439–456 (2020). https://doi.org/10.1007/s10973-019-08819-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08819-z

Keywords

Navigation