Skip to main content
Log in

Heat transfer enhancement in a single-pipe heat exchanger with fluidic oscillators

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The current experimental study investigates the effects of installing three types of fluidic oscillators—feedback-free, single-feedback loop and two-feedback channel—on thermal performance of a single-pipe heat exchanger. Results are presented as Nusselt number and friction coefficient at the Reynolds number range of 5600–16,400 and two surface thermal conditions: (a) constant continuous heat flux (CCHF) and (b) constant periodically interrupted heat flux (CPIHF). All the three fluidic oscillators have the same square exit throat with the length of 5.67 mm and the same outer diffuser with the depth of 5.67 mm and 45° diverging angle which overlap the tube’s inner diameter. In the case of CCHF, up to 37%, 83%, and 23% heat transfer enhancement are observed for feedback-free, single-feedback loop and two-feedback channel fluidic oscillators, respectively. In the case of CPIHF, feedback-free and two-feedback channel fluidic oscillators showed no merit relative to the plain tube, but single-loop feedback fluidic oscillator still gives up to 57% thermal performance enhancement. Since fluidic oscillators are no-moving-part devices capable of generating self-induced self-sustained oscillating flows, the current study indicates the high capability of the fluidic oscillators for the passive heat transfer enhancement of heat exchangers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

A :

Heat transfer area (m2)

D :

Pipe’s inner diameter (m)

f :

Friction coefficient

F :

Frequency (Hz)

h ave :

Average heat transfer coefficient (W/m2 K)

I :

Electric current (A)

Nu :

Nusselt number

P :

Pressure (Pa)

ΔP :

Pressure drop (Pa)

P e,i :

Electric power input (W)

Pr :

Prandtl number

q conv :

Convective heat transfer rate (W)

q e,o :

Effective heat generated by electricity (W)

q h :

Enthalpy increase in flow inside the tube (W)

Q :

Volumetric flow rate (m3/s)

Re :

Reynolds number

T b :

Fluid bulk temperature (°C)

T in :

Fluid temperature at inlet (°C)

T out :

Fluid temperature at outlet (°C)

\(\tilde{T}_{\rm w}\) :

Mean wall temperature (°C)

u in :

Inlet flow velocity (m/s)

V :

Voltage applied on heaters (V)

w :

Width of the oscillators (m)

ε :

Roughness (m)

η :

Performance evaluation criterion

μ :

Dynamic viscosity (pa.s)

ρ :

Density (kg/m3)

References

  1. Kakac S, Liu H, Pramuanjaroenkij A. Heat exchangers: selection, rating, and thermal design. 3rd ed. London: CRC Press; 2012.

    Book  Google Scholar 

  2. Bergles A. The implications and challenges of enhanced heat transfer for the chemical process industries. Chem Eng Res Des. 2001;79(4):437–44.

    Article  CAS  Google Scholar 

  3. Amini Y, Akhavan S, Izadpanah E. A numerical investigation on the heat transfer characteristics of nanofluid flow in a three-dimensional microchannel with harmonic rotating vortex generators. J Therm Anal Calorim. 2019;1:1–10. https://doi.org/10.1007/s10973-019-08402-6.

    Article  CAS  Google Scholar 

  4. Mousavi SB, Heyhat MM. Numerical study of heat transfer enhancement from a heated circular cylinder by using nanofluid and transverse oscillation. J Therm Anal Calorim. 2019;135(2):935–45.

    Article  CAS  Google Scholar 

  5. Pethkool S, Eiamsa-Ard S, Kwankaomeng S, Promvonge P. Turbulent heat transfer enhancement in a heat exchanger using helically corrugated tube. Int Commun Heat Mass Transf. 2011;38(3):340–7. https://doi.org/10.1016/j.icheatmasstransfer.2010.11.014.

    Article  Google Scholar 

  6. Fasano M, Ventola L, Calignano F, Manfredi D, Ambrosio EP, Chiavazzo E, et al. Passive heat transfer enhancement by 3D printed Pitot tube based heat sink. Int Commun Heat Mass Transf. 2016;74:36–9. https://doi.org/10.1016/j.icheatmasstransfer.2016.03.012.

    Article  Google Scholar 

  7. Anbu S, Venkatachalapathy S, Suresh S. Convective heat transfer studies on helically corrugated tubes with spiraled rod inserts using TiO2/DI water nanofluids. J Therm Anal Calorim. 2019;137(3):849–64.

    Article  CAS  Google Scholar 

  8. Menni Y, Azzi A, Chamkha A. Enhancement of convective heat transfer in smooth air channels with wall-mounted obstacles in the flow path. J Therm Anal Calorim. 2019;135(4):1951–76.

    Article  CAS  Google Scholar 

  9. Omidi M, Darzi AAR, Farhadi M. Turbulent heat transfer and fluid flow of alumina nanofluid inside three-lobed twisted tube. J Therm Anal Calorim. 2019;137(4):1451–62.

    Article  CAS  Google Scholar 

  10. Shadlaghani A, Farzaneh M, Shahabadi M, Tavakoli MR, Safaei MR, Mazinani I. Numerical investigation of serrated fins on natural convection from concentric and eccentric annuli with different cross sections. J Therm Anal Calorim. 2019;135(2):1429–42.

    Article  CAS  Google Scholar 

  11. Jafari M, Farhadi M, Sedighi K. An experimental study on the effects of a new swirl generator on thermal performance of a circular tube. Int Commun Heat Mass Transf. 2017;87:277–87. https://doi.org/10.1016/j.icheatmasstransfer.2017.07.016.

    Article  Google Scholar 

  12. Bahiraei M, Mashaei PR. Using nanofluid as a smart suspension in cooling channels with discrete heat sources. J Therm Anal Calorim. 2015;119(3):2079–91.

    Article  CAS  Google Scholar 

  13. Wang W, Wu Z, Li B, Sundén B. A review on molten-salt-based and ionic-liquid-based nanofluids for medium-to-high temperature heat transfer. J Therm Anal Calorim. 2018;136:1–15.

    CAS  Google Scholar 

  14. Rashidi S, Eskandarian M, Mahian O, Poncet S. Combination of nanofluid and inserts for heat transfer enhancement. J Therm Anal Calorim. 2019;135(1):437–60.

    Article  CAS  Google Scholar 

  15. Gündogdu M, Carpinlioglu M. Present state of art on pulsatile flow theory (part 1: laminar and transitional flow regimes). JSME Int J Ser B Fluids Therm Eng. 1999;42(3):384–97.

    Article  Google Scholar 

  16. Jun Z, Danling Z, Ping W, Hong G. An experimental study of heat transfer enhancement with a pulsating flow. Heat Transf—Asian Res. 2004;33(5):279–86. https://doi.org/10.1002/htj.20020.

    Article  Google Scholar 

  17. Roh CW, Kim MS. Enhancement of heat pump performance by pulsation of refrigerant flow using a solenoid-driven control valve. Int J Refrigeration. 2012;35(6):1547–57. https://doi.org/10.1016/j.ijrefrig.2012.04.018.

    Article  CAS  Google Scholar 

  18. Zohir A. Heat transfer characteristics in a heat exchanger for turbulent pulsating water flow with different amplitudes. J Am Sci. 2012;8(2):241–50.

    Google Scholar 

  19. Kivisalu M, Gorgitrattanagul P, Narain A. Results for high heat-flux flow realizations in innovative operations of milli-meter scale condensers and boilers. Int J Heat Mass Transf. 2014;75:381–98. https://doi.org/10.1016/j.ijheatmasstransfer.2014.03.056.

    Article  CAS  Google Scholar 

  20. Zohir A, Aziz AAA, Habib M. Heat transfer characteristics and pressure drop of the concentric tube equipped with coiled wires for pulsating turbulent flow. Exp Therm Fluid Sci. 2015;65:41–51. https://doi.org/10.1016/j.expthermflusci.2015.03.003.

    Article  Google Scholar 

  21. Wang X, Tang K, Hrnjak P. Evaporator performance enhancement by pulsation width modulation (PWM). Appl Therm Eng. 2016;99:825–33. https://doi.org/10.1016/j.applthermaleng.2015.12.049.

    Article  Google Scholar 

  22. Havemann H, Rao NN. Heat transfer in pulsating flow. Nature. 1954;174:41.

    Article  Google Scholar 

  23. Habib M, Attya A, Eid A, Aly A. Convective heat transfer characteristics of laminar pulsating pipe air flow. Heat Mass Transf. 2002;38(3):221–32. https://doi.org/10.1007/s002310100206.

    Article  CAS  Google Scholar 

  24. Liu C-l, von Wolfersdorf J, Zhai Y-n. Time-resolved heat transfer characteristics for periodically pulsating turbulent flows with time varying flow temperatures. Int J Therm Sci. 2015;89:222–33. https://doi.org/10.1016/j.ijthermalsci.2014.11.008.

    Article  Google Scholar 

  25. Mehta B, Khandekar S. Local experimental heat transfer of single-phase pulsating laminar flow in a square mini-channel. Int J Therm Sci. 2015;91:157–66. https://doi.org/10.1016/j.ijthermalsci.2015.01.008.

    Article  Google Scholar 

  26. Ghanami S, Farhadi M. Fluidic oscillators’ applications, structures and mechanisms—a review. Transp Phenom Nano Micro Scales. 2019;7(1):9–27. https://doi.org/10.22111/tpnms.2018.25051.1153.

    Article  Google Scholar 

  27. Camci C, Herr F. Forced convection heat transfer enhancement using a self-oscillating impinging planar jet. J Heat Transf. 2002;124(4):770–82. https://doi.org/10.1115/1.1471521.

    Article  Google Scholar 

  28. Narumanchi S, Kelly K, Mihalic M, Gopalan S, Hester R, Vlahinos A, editors. Single-phase self-oscillating jets for enhanced heat transfer. In: 24th IEEE SEMI-THERM symposium; 2008 March 16–20; California: IEEE.

  29. Tesař V. Enhancing impinging jet heat or mass transfer by fluidically generated flow pulsation. Chem Eng Res Des. 2009;87(2):181–92. https://doi.org/10.1016/j.cherd.2008.08.003.

    Article  CAS  Google Scholar 

  30. Hossain MA, Agricola L, Ameri A, Gregory JW, Bons JP, editors. Sweeping jet film cooling on a turbine vane. In: ASME Turbo Expo 2018: turbomachinery technical conference and exposition; 2018 June 11–15; Oslo: ASME.

  31. Ostermann F, Woszidlo R, Nayeri C, Paschereit CO, editors. Experimental comparison between the flow field of two common fluidic oscillator designs. In: 53rd AIAA aerospace sciences meeting; 2015 Jan. 5–9, 2015; Florida: AIAA SciTech.

  32. Bauer P, inventor; Chicago Rawhide Manufacturing Co Inc, assignee. Fluidic oscillator with resonant inertance and dynamic compliance circuit. United States patent US 4,231,519. 1980 Nov 4.

  33. Tomac MN, Gregory JW. Internal jet interactions in a fluidic oscillator at low flow rate. Exp Fluids. 2014;55:1730. https://doi.org/10.1007/s00348-014-1730-8.

    Article  CAS  Google Scholar 

  34. Liu S, Sakr M. A comprehensive review on passive heat transfer enhancements in pipe exchangers. Renew Sustain Energy Rev. 2013;19:64–81. https://doi.org/10.1016/j.rser.2012.11.021.

    Article  CAS  Google Scholar 

  35. Kline S, McClintock F. Describing uncertainties in single-sample experiments. Mech Eng. 1953;75:3–8.

    Google Scholar 

  36. Bergman TL, Lavine AS, Incropera FP, DeWitt DP. Fundamentals of heat and mass transfer. 7th ed. Hoboken: Wiley; 2011.

    Google Scholar 

  37. Vatankhah AR, Kouchakzadeh S. Discussion of “Turbulent flow friction factor calculation using a mathematically exact alternative to the Colebrook-White equation” by Jagadeesh R. Sonnad and Chetan T. Goudar. J Hydraul Eng. 2008;134(8):1187.

    Article  Google Scholar 

  38. Haaland SE. Simple and explicit formulas for the friction factor in turbulent pipe flow. J Fluids Eng. 1983;105(1):89–90.

    Article  Google Scholar 

  39. Kays WM, Crawford ME. Convective heat and mass transfer, vol. BOOK. 3rd ed. New York: McGraw-Hill; 1993.

    Google Scholar 

  40. Hajmohammadi MR, Nourazar S, Campo A, Poozesh S. Optimal discrete distribution of heat flux elements for in-tube laminar forced convection. Int J Heat Fluid Flow. 2013;40:89–96. https://doi.org/10.1016/j.ijheatfluidflow.2013.01.010.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the founding support of Babol Noshirvani University of Technology through grant program No. BNUT/370520/98.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mousa Farhadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghanami, S., Farhadi, M. Heat transfer enhancement in a single-pipe heat exchanger with fluidic oscillators. J Therm Anal Calorim 140, 1107–1119 (2020). https://doi.org/10.1007/s10973-019-08816-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08816-2

Keywords

Navigation