Skip to main content
Log in

Thermal, mechanical, electrical and thermoelectric properties of Bi–As–Se glasses

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The current study focuses on the impact of As addition on the thermal, mechanical, electrical and thermoelectric properties of ternary \({\text{Bi}}_{0.02} {\text{As}}_{\text{x}}\,{\text{Se}}_{{0.98 - {\text{x}}}}\) (\(0.02 \le x \le 0.08\)) glasses. Different elastic moduli such as the micro-hardness (H), Young’s modulus (Y), bulk modulus (K), Poisson’s ratio (Pr) and shear modulus (S) as well as Debye temperature (TD) for the studied glasses were estimated by using the measured values of the ultrasonic speeds (transfer, vl, and shear, vs) and density (ρ). Moreover, the measured values of the dc electrical conductivity (σdc) and thermoelectric power (Sthermo) were used to estimate the activation energies for the electrical (ΔEdc) and for thermoelectric (ΔEthermo) conductions, respectively. It was found that σdc increases, whereas Sthermo, ΔEdc and ΔEthermo decrease with increasing the As content for the \({\text{Bi}}_{0.02} {\text{As}}_{\text{x}}\,{\text{Se}}_{{0.98 - {\text{x}}}}\) (\(0.02 \le x \le 0.08\)) thin films. In addition, replacement of Se with As atoms results in an increase in the average coordination number (CN), cross-linking density (Cd), cohesive energy (CE), ρ, H, Y, K, S and TD, whereas the molar volume (Vm), Pr and the homopolar Se–Se bonds decreased. Both of Y and K as well as ΔEdc are correlated with the glass transition temperature (Tg).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aly KA, Dahshan A, Abdel-Rahim FM. Thermal stability of Ge–As–Te–In glasses. J Alloys Compd. 2009;470:574–9.

    CAS  Google Scholar 

  2. Dahshan A, Aly KA. Optical constants of new amorphous As–Ge–Se–Sb thin films. Acta Mater. 2008;56:4869–75.

    CAS  Google Scholar 

  3. Khan ZH, Husain M. Electrical and optical properties of thin film of a–Se70Te30 nanorods. J Alloys Compd. 2009;486:774–9.

    CAS  Google Scholar 

  4. Abd El Ghanny HA, Wakkad MM, Abo Sehli A, Assraan N. The electrical conductivity of GexIn8Se92−x (14 ≤ x≤ 25.5 at%) chalcogenide thin films. Physica B. 2006;371:35–42.

    CAS  Google Scholar 

  5. Abdel-Kader A, El-Mallawany R, Elkholy MM. Dc electrical conductivity of tellurite phosphate glasses. J Appl Phys. 1993;73:75–7.

    CAS  Google Scholar 

  6. Chen MF, Yang XJ, Hu RX, Cui ZD, Man HC. Bioactive NiTi shape memory alloy used as bone bonding implants. Mater Sci Eng C. 2004;24:497–502.

    CAS  Google Scholar 

  7. Chen SC, Chang TC, Liu PT, Wu YC, Ko CC, Yang S, Feng LW, Sze SM, Chang CY, Lien CH. Pi-shape gate polycrystalline silicon thin-film transistor for nonvolatile memory applications. Appl Phys Lett. 2007;91:213101.

    Google Scholar 

  8. Chen WR, Chang TC, Hsieh YT, Sze SM, Chang CY. Formation of Ge nanocrystals using Si1.33Ge0.67O2 and Si2.67Ge1.33N2 film for nonvolatile memory application. Appl Phys Lett. 2007;91:102106.

    Google Scholar 

  9. Böhönyey A, Kiss LF, Lovas A. Reversible relaxation spectra of (Fe-) Ni–P metallic glasses. J Non Cryst Solids. 1995;192–193:424–7.

    Google Scholar 

  10. Aoki T, Shimada H, Hirao N, Yoshida N, Shimakawa K, Elliott SR. Reversible photoinduced changes of electronic transport in narrow-gap amorphous Sb2Se3. Phys Rev B. 1999;59:1579–81.

    CAS  Google Scholar 

  11. Desnica D, Desnica UV. Metastable complex defects in α-(Al0.02In0.98)2Se3. J Phys Chem Solids. 1985;46:545–50.

    CAS  Google Scholar 

  12. Alberts V, Swanepoel R. Structural analysis of CulnSe2 thin films prepared by selenization of Cu–In films. J Mater Sci: Mater Electron. 1996;7:91–9.

    CAS  Google Scholar 

  13. Rockstad HK, Flasck R, Iwasa S. Seebeck coefficient in amorphous chalcogenide films. J Non Cryst Solids. 1972;8–10:326–30.

    Google Scholar 

  14. Alexieva ZI, Nenova ZS, Bakardjieva VS, Milanova MM, Dikov HM. Antireflection coatings for GaAs solar cell applications. J Phys Conf Ser. 2010;223:012045.

    Google Scholar 

  15. Bube RH. CdTe junction phenomena. Solar Cells. 1988;23:1–17.

    CAS  Google Scholar 

  16. Abdel Hady D, El-Shazly AA, Soliman HS, El-Shazly EA. The thermoelectric power, the dark electrical resistivity and the grain boundary potential barrier in CdIn2Se4 thin films. Physica A. 1996;226:324–9.

    Google Scholar 

  17. Ahmed AM, Megahid NM, Wakkad MM, Diab AK. Conduction behaviour and thermoelectric power of Agx(As 0.4Se0.6)100−x chalcogenide system. J Phys Chem Solids. 2005;66:1274–80.

    CAS  Google Scholar 

  18. Boshta M, Morchshakov V, Bärner K, Braunstein R. The charge transport properties of a HWCVD a-Si: H thin film under bending pressure. Adv Mater Sci Eng. 2008;2008:1–5.

    Google Scholar 

  19. Matsubara R, Ohashi N, Sakai M, Kudo K, Nakamura M. Analysis of barrier height at crystalline domain boundary and in-domain mobility in pentacene polycrystalline films on SiO2. Appl Phys Lett. 2008;92:242108.

    Google Scholar 

  20. El-Desoky MM, Kashif I. Electrical conductivity in mixed calcium and barium iron phosphate glasses. Physica Status Solidi. 2002;194:89–105.

    CAS  Google Scholar 

  21. Boshta M, Alavi B, Braunstein R, Bärner K, Dalal VL. Electronic transport properties of the μc-(Si, Ge) alloys prepared by ECR. Sol Energy Mater Sol Cells. 2005;87:387–93.

    CAS  Google Scholar 

  22. Ahn E, Williams GA, Taylor PC, Georgiev DG, Boolchand P, Schwickert BE, Cappelletti RL. Nuclear quadrupole resonance study of the glassy AsxSe1−x system. J Non Cryst Solids. 2002;299–302:958–62.

    Google Scholar 

  23. Feltz A, Aust H, Blayer A. Glass formation and properties of chalcogenide systems XXVI: permittivity and the structure of glasses AsxSe1-x and GexSe1−x. J Non Cryst Solids. 1983;55:179–90.

    CAS  Google Scholar 

  24. Georgiev DG, Boolchand P, Micoulaut M. Rigidity transitions and molecular structure of AsxSe1−x glasses. Phys Rev B. 2000;62:R9228–31.

    CAS  Google Scholar 

  25. Tichý L, Tichá H. Remark on the glass-forming ability in GexSe1−x and AsxSe1−x systems. J Non Cryst Solids. 2000;261:277–81.

    Google Scholar 

  26. Wagner T, Kasap SO. Glass transformation, heat capacity and structure of AsxSe1-x glasses studied by modulated temperature differential scanning calorimetry experiments. Philos Mag B. 1996;74:667–80.

    CAS  Google Scholar 

  27. Yang G, Bureau B, Rouxel T, Gueguen Y, Gulbiten O, Roiland C, Soignard E, Yarger JL, Troles J, Sangleboeuf JC, Lucas P. Correlation between structure and physical properties of chalcogenide glasses in the AsxSe1−x system. Phys Rev B. 2010;82:195206.

    Google Scholar 

  28. Adriaenssens GJ, Nagels P. Transient photocurrents in Bi-modified Ge2Se7. J Non Cryst Solids. 1989;114:100–2.

    CAS  Google Scholar 

  29. Aly KA, Abdel Rahim FM, Dahshan A. Thermal analysis and physical properties of Bi–Se–Te chalcogenide glasses. J Alloys Compd. 2014;593:283–9.

    CAS  Google Scholar 

  30. Barman PB, Sharma P. Optical studies of Se–Bi–Te–Sb thin films by single transmission spectrum. Glass Phys Chem. 2013;39:276–8.

    CAS  Google Scholar 

  31. Afifi H, Marzouk S. Ultrasonic velocity and elastic moduli of heavy metal tellurite glasses. Mater Chem Phys. 2003;80:517–23.

    CAS  Google Scholar 

  32. Saddeek YB. Study of elastic moduli of lithium borobismuthate glasses using ultrasonic technique. J Non Cryst Solids. 2011;357:2920–5.

    CAS  Google Scholar 

  33. Ota R, Soga N, Kunugi M. Elastic properties of As–Se glasses. J Ceram Soc Jpn. 1973;81:156–61.

    CAS  Google Scholar 

  34. Sreeram AN, Varshneya AK, Swiler DR. Molar volume and elastic properties of multicomponent chalcogenide glasses. J Non Cryst Solids. 1991;128:294–309.

    CAS  Google Scholar 

  35. Alharbi SR, Aly KA, Dahshan A, Saddeek YB. Crystallization kinetics of binary arsenic selenium chalcogenides. J Therm Anal Calorim. 2018;135:2069–75.

    Google Scholar 

  36. Aly KA, Saddeek YB, Dahshan A. Structure and crystallization kinetics of manganese lead tellurite glasses. J Therm Anal Calorim. 2015;119:1215–24.

    CAS  Google Scholar 

  37. Aly KA, Dahshan A, Abbady G, Saddeek Y. Electrical and thermoelectric properties of different compositions of Ge–Se–In thin films. Physica B. 2016;497:1–5.

    CAS  Google Scholar 

  38. Aly KA, Saddeek Y, Dahshan A. Discussion on the electrical and thermoelectrical properties of amorphous In–Sb–Te Films. Appl Phys A Mater Sci Process. 2016;122(3):1–6.

    Google Scholar 

  39. Aly KA, Saddeek Y, Dahshan A. Discussion on the electrical and thermoelectrical properties of amorphous In–Sb–Te films. Appl Phys A Mater Sci Process. 2016;122:1–6.

    Google Scholar 

  40. Fritzsche H. A general expression for the thermoelectric power. Solid State Commun. 1971;9:1813–5.

    CAS  Google Scholar 

  41. Khan ZH, Zulfeqaur M, Kumar A, Husain M. Electrical conductivity and thermo-electric power of a-Se80−xInx and Se80−xGe20Inx thin films. Can J Phys. 2002;80:19–27.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through General Research Project Under Grant Number (G.R.P-192-40).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Dahshan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dahshan, A., Alharbi, S.R., Aly, K.A. et al. Thermal, mechanical, electrical and thermoelectric properties of Bi–As–Se glasses. J Therm Anal Calorim 140, 125–131 (2020). https://doi.org/10.1007/s10973-019-08810-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08810-8

Keywords

Navigation