Skip to main content
Log in

Effects of wavy wall and Y-shaped fins on solidification of PCM with dispersion of Al2O3 nanoparticle

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In current modeling, solidification process within a three-dimensional triplex tube was numerically studied. In two sides, the cold water flow is used while the middle tube contains RT82. The purpose of the current article is investigating the impacts of using nanoparticles, fin, and the combination of both of them on thermal characteristics during solidification in an energy storage unit. Also, the amount of stored energy has been investigated over time, and the influences of temperature and water velocity were scrutinized. The results revealed some substantial improvements in the solidification rate by adding fins or nanoparticles. It was indicated that using a combination of these two heat transfer enhancement methods presents a better enhancement compared to when either of these two methods is employed alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Abbreviations

TES:

Thermal energy storage

D :

Tube diameter (m)

T l :

Liquidus temperature

Ste :

Stefan number

H :

Enthalpy

p :

Pressure (Pa)

L :

Triplex-tube length

r :

Tube radius (m)

Re :

Reynolds number

S i :

Source term

T s :

Solidus temperature

v :

Velocity (m s−1)

HTF:

Heat transfer fluid

φ :

Nanoparticle fraction

Γ :

Latent melting heat (J kg−1)

λ :

Liquid fraction

ini:

Initial

l:

Melt phase

m:

Middle tube

np:

Nano-enhanced PCM

o:

Outer tube

p:

PCM

ref:

Reference

s:

Solid phase

References

  1. Sahan N, Fois M, Paksoy H. Improving thermal conductivity phase change materials—a study of paraffin nanomagnetite composites. Sol Energy Mater Sol Cells. 2015;137:61–7.

    CAS  Google Scholar 

  2. Parsazadeh M, Duan X. Numerical and statistical study on melting of nanoparticle enhanced phase change material in a shell-and-tube thermal energy storage system. Appl Therm Eng. 2017;11:950–60.

    Google Scholar 

  3. Longeon M, Soupart A, Fourmigue J-F, Bruch A, Marty P. Experimental and numerical study of annular PCM storage in the presence of natural convection. Appl Energy. 2013;112:175–84.

    CAS  Google Scholar 

  4. Zhao C-Y, Lu W, Tian Y. Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs). Sol Energy. 2010;84(8):1402–12.

    CAS  Google Scholar 

  5. Nematpour Keshteli A, Sheikholeslami M. Nanoparticle enhanced PCM applications for intensification of thermal performance in building: a review. J Mol Liq. 2019;274:516–33.

    CAS  Google Scholar 

  6. Rashidi S, Mahian O, Languri E-M. Applications of nanofluids in condensing and evaporating systems. J Therm Anal Calorim. 2018;131(3):2027–39.

    CAS  Google Scholar 

  7. Dhaidan N-S, Khodadadi J-M, Al-Hattab T-A, Al-Mashat S-M. Experimental and numerical investigation of melting of NePCM inside an annular container under a constant heat flux including the effect of eccentricity. Int J Heat Mass Transf. 2013;67:455–68.

    CAS  Google Scholar 

  8. Selimefendigil F, Chamkha A-J. Magnetohydrodynamics mixed convection in a lid-driven cavity having a corrugated bottom wall and filled with a non-Newtonian power-law fluid under the influence of an inclined magnetic field. J Therm Sci Eng Appl. 2016;8(2):021023.

    Google Scholar 

  9. Sheikholeslami M. Numerical modeling of Nano enhanced PCM solidification in an enclosure with metallic fin. J Mol Liq. 2018;259:424–38.

    CAS  Google Scholar 

  10. Hosseinizadeh S, Darzi A-R, Tan F. Numerical investigations of unconstrained melting of nano-enhanced phase change material (NEPCM) inside a spherical container. Int J Therm Sci. 2012;51:77–83.

    CAS  Google Scholar 

  11. Selimefendigil F, Oztop H-F. Corrugated conductive partition effects on MHD free convection of CNT-water nanofluid in a cavity. Int J Heat Mass Transf. 2019;129:265–77.

    CAS  Google Scholar 

  12. Al-Abidi A-A, Mat S, Sopian K, Sulaiman M-Y, Mohammad A-T. Internal and external fin heat transfer enhancement technique for latent heat thermal energy storage in triplex tube heat exchangers. Appl Therm Eng. 2013;53(1):147–56.

    Google Scholar 

  13. Al-Abidi A-A, Mat S, Sopian K, Sulaiman M-Y, Mohammad A-T. Numerical study of PCM solidification in a triplex tube heat exchanger with internal and external fins. Int J Heat Mass Transf. 2013;61:684–95.

    Google Scholar 

  14. Sheikholeslami M. Numerical simulation for solidification in a LHTESS by means of nano-enhanced PCM. J Taiwan Inst Chem Eng. 2018;86:25–41.

    CAS  Google Scholar 

  15. Al-Abidi A-A, Mat S, Sopian K, Sulaiman M-Y, Mohammad A-T. Experimental study of melting and solidification of PCM in a triplex tube heat exchanger with fins. Energy Build. 2014;68:33–41.

    Google Scholar 

  16. Ettouney H, El-Dessouky H, Al-Kandari E. Heat transfer characteristics during melting and solidification of phase change energy storage process. Ind Eng Chem Res. 2004;43(17):5350–7.

    CAS  Google Scholar 

  17. Selimefendigil F, Oztop H-F. Mixed convection in a PCM filled cavity under the influence of a rotating cylinder. Sol Energy. 2019. https://doi.org/10.1016/j.solener.2019.05.062.

    Article  Google Scholar 

  18. Allen M-J, Sharifi N, Faghri A, Bergman T-L. Effect of inclination angle during melting and solidification of a phase change material using a combined heat pipe-metal foam or foil configuration. Int J Heat Mass Transf. 2015;80:767–80.

    CAS  Google Scholar 

  19. Sheikholeslami M. Finite element method for PCM solidification in existence of CuO nanoparticles. J Mol Liq. 2018;265:347–55.

    CAS  Google Scholar 

  20. Tay N, Bruno F, Belusko M. Comparison of pinned and finned tubes in a phase change thermal energy storage system using CFD. Appl Energy. 2013;104:79–86.

    CAS  Google Scholar 

  21. Chamkha A-J, Selimefendigil F. MHD mixed convection of nanofluid due to an inner rotating cylinder in a 3D enclosure with a phase change material. Int J Numer Methods Heat Fluid Flow. 2018. https://doi.org/10.1108/HFF-07-2018-0364.

    Article  Google Scholar 

  22. Sciacovelli A, Gagliardi F, Verda V. Maximization of performance of a PCM latent heat storage system with innovative fins. Appl Energy. 2015;137:707–15.

    Google Scholar 

  23. Mosaffa A, Talati F, Tabrizi H-B, Rosen M-A. Analytical modeling of PCM solidification in a shell and tube finned thermal storage for air conditioning systems. Energy Build. 2012;49:356–61.

    Google Scholar 

  24. Stritih U. An experimental study of enhanced heat transfer in rectangular PCM thermal storage. Int J Heat Mass Transf. 2004;47(12–13):2841–7.

    CAS  Google Scholar 

  25. Jahangiri A, Ahmadi O. Numerical investigation of enhancement in melting process of PCM by using internal fins. J Therm Anal Calorim. 2019;137(6):1–8.

    Google Scholar 

  26. Blen K, Takgil F, Kaygusuz K. Thermal energy storage behavior of CaCl2·6H2O during melting and solidification. Energy Sources Part A. 2008;30(9):775–87.

    Google Scholar 

  27. Ismail K, Moraes R. A numerical and experimental investigation of different containers and PCM options for cold storage modular units for domestic applications. Int J Heat Mass Transf. 2009;52(19–20):4195–202.

    CAS  Google Scholar 

  28. Selimefendigil F, Oztop H-F, Chamkha A-J. Natural convection in a CuO–water nanofluid filled cavity under the effect of an inclined magnetic field and phase change material (PCM) attached to its vertical wall. J Therm Anal Calorim. 2019;135(2):1577–94.

    CAS  Google Scholar 

  29. Rathod M-K, Banerjee J. Thermal performance enhancement of shell and tube Latent Heat Storage Unit using longitudinal fins. Appl Therm Eng. 2015;75:1084–92.

    Google Scholar 

  30. Sarı A, Kaygusuz K. Thermal and heat transfer characteristics in a latent heat storage system using lauric acid. Energy Convers Manag. 2002;43(18):2493–507.

    Google Scholar 

  31. Medrano M, Yilmaz M-O, Nogues M, Martorell I, Roca J. Experimental evaluation of commercial heat exchangers for use as PCM thermal storage systems. Appl Energy. 2009;86(10):2047–55.

    CAS  Google Scholar 

  32. Selimefendigil F, Oztop H-F. Conjugate mixed convection of nanofluid in a cubic enclosure separated with a conductive plate and having an inner rotating cylinder. Int J Heat Mass Transf. 2019;139:1000–17.

    Google Scholar 

  33. Mat S, Al-Abidi A-A, Sopian K, Sulaiman M-Y, Mohammada A-T. Enhance heat transfer for PCM melting in triplex tube with internal–external fins. Energy Convers Manag. 2013;74:223–36.

    CAS  Google Scholar 

  34. Jesumathy S-P, Udayakumar M, Suresh S. Heat transfer characteristics in latent heat storage system using paraffin wax. J Mech Sci Technol. 2012;26(3):959–65.

    Google Scholar 

  35. Castell A, Sole C, Medrano M, Roca J. Natural convection heat transfer coefficients in phase change material (PCM) modules with external vertical fins. Appl Therm Eng. 2008;28(13):1676–86.

    CAS  Google Scholar 

  36. Liu C, Groulx D. Experimental study of the phase change heat transfer inside a horizontal cylindrical latent heat energy storage system. Int J Therm Sci. 2014;82:100–10.

    Google Scholar 

  37. Avci M, Yazici M-Y. Experimental study of thermal energy storage characteristics of a paraffin in a horizontal tube-in-shell storage unit. Energy Convers Manag. 2013;73:271–7.

    CAS  Google Scholar 

  38. Fath H-E. Heat exchanger performance for latent heat thermal energy storage system. Energy Convers Manag. 1991;31(2):149–55.

    CAS  Google Scholar 

  39. Assis E, Ziskind G, Letan R. Numerical and experimental study of solidification in a spherical shell. J Heat Transf. 2009;131(2):024502.

    Google Scholar 

  40. Abdulateef A-M, Abdulateef J, Mat S, Sopian K, Elhu B, Mussa M-A. Experimental and computational study of solidifying phase-change material in a triplex tube heat exchanger with longitudinal/triangular fins. Int Commun Heat Mass Transf. 2018;90:73–84.

    Google Scholar 

  41. Parameshwaran R, Jayavel R, Kalaiselvam S. Study on thermal properties of organic ester phase-change material embedded with silver nanoparticles. J Therm Anal Calorim. 2013;114(2):845–58.

    CAS  Google Scholar 

  42. Selimefendigil F, Oztop H-F, Abu-Hamdeh N-H. Mixed convection due to a rotating cylinder in a 3D corrugated cavity filled with single walled CNT-water nanofluid. J Therm Anal Calorim. 2019;135(1):341–55.

    CAS  Google Scholar 

  43. Brent A, Voller V, Reid K. Enthalpy-porosity technique for modeling convection-diffusion phase change: application to the melting of a pure metal. Numer Heat Transf Part A Appl. 1988;13(3):297–318.

    Google Scholar 

  44. Gong Z-X, Devahastin S, Mujumdar A-S. Enhanced heat transfer in free convection-dominated melting in a rectangular cavity with an isothermal vertical wall. Appl Therm Eng. 1999;19(12):1237–51.

    CAS  Google Scholar 

  45. Ye W-B, Zhu D-S, Wang N. Numerical simulation on phase-change thermal storage/release in a plate-fin unit. Appl Therm Eng. 2011;31(17–18):3871–84.

    CAS  Google Scholar 

  46. Wakao N, Kaguei S. Heat and mass transfer in packed beds. New York: Gordon and Breach Science Publishers; 1982. p. 175–205.

    Google Scholar 

Download references

Acknowledgements

Sheikholeslami and Keshteli acknowledge the funding support of Babol Noshirvani University of Technology through Grant Program No. BNUT/390051/99.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sheikholeslami.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keshteli, A.N., Sheikholeslami, M. Effects of wavy wall and Y-shaped fins on solidification of PCM with dispersion of Al2O3 nanoparticle. J Therm Anal Calorim 140, 381–396 (2020). https://doi.org/10.1007/s10973-019-08807-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08807-3

Keywords

Navigation