Skip to main content
Log in

Thermal and catalytic pyrolysis of polyvinyl chloride using micro/mesoporous ZSM-35/MCM-41 catalysts

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Micro/mesoporous catalysts of ZSM-35/MCM-41 type were developed by mechanical synthesis method with the objective to use on the catalytic pyrolysis of PVC. They were characterized by X-ray diffraction (XRD), N2 adsorption/desorption at 77 K. The obtained results of XRD showed at low and high angles that catalysts present two phases of MCM-41 and ZSM-35, respectively. Textural characterization of the synthesized porous solids showed MCM-41 an adsorption isotherm type IV and to ZSM-35 an isotherm type I according to IUPAC. MCM-41 Synthesized MCM-41 presents H1-type hysteresis and ZSM-35 presents H4-type hysteresis. When the ratio of MCM-41 decreases in the micro/mesoporous catalyst, the H1 hysteresis curve (pure MCM-41) tends to approach the H4 curve (pure ZSM-35). The greater the proportion of ZSM-35 in the catalytic composition, the smaller the amount of N2 adsorbed, due to ZSM-35 microporous structure. Pyrolysis tests showed that the thermal and catalytic decomposition of PVC occurs in two complex stages of reaction and that the heating rate, the presence and the composition of the catalyst influence the pyrolysis process. Under the conditions studied, the 75ZSM-35/25MCM-41 catalyst exhibits the larger decrease in the total decomposition temperature of PVC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Al-Salem SJ, Lettieri P, Baeyens J. Recycling and recovery routes of plastic solids waste (PSW): a review. Waste Manag. 2009;29:2625–43.

    CAS  PubMed  Google Scholar 

  2. Shah J, Jan MJ, Mabood F, Jabeen F. Catalytic pyrolysis of LDPE leads to valuable resource recovery and reduction of waste problems. Energy Convers Manag. 2010;51:2791–801.

    CAS  Google Scholar 

  3. Kumar S, Panda AK, Singh RK. A review on tertiary recycling of high density polyethylene to fuel. Resour Conserv Recycl. 2011;55:893–910.

    Google Scholar 

  4. Spinacé MAS, De Paoli MAA. A tecnologia de reciclagem de polímeros. Quím Nova. 2005;28(1):65–72.

    Google Scholar 

  5. Al-Salem SM, Antelava A, Constantinou A, Manos G, Dutta A. A review on thermal and catalytic pyrolysis of plastic solid waste (PSW). J Environ Manag. 2017;197:177–98.

    CAS  Google Scholar 

  6. Abbas-Abadi MS, Mcdonald AG, Haghighi MN, Yeganeh H. Estimation of pyrolysis product of LDPE degradation using different process parameters in a stirred reactors. Polyolefins J. 2015;2(1):39–47.

    Google Scholar 

  7. Almeida D, Marques MF. Thermal and catalytical pyrolysis of plastic waste. Polímeros. 2016;26(1):44–51.

    Google Scholar 

  8. Holm MS, Taarninga E, Egeblada K, Christensen CH. Catalysis with hierarchical zeolites. Catal Today. 2011;168(1):3–16.

    CAS  Google Scholar 

  9. Coelho A, Costa L, Marques MM, Fonseca IM, Lemos MANDA, Lemos F. The effect of ZSM-5 zeolite acidity on the catalytic degradation of high-density polyethylene using simultaneous DSC/TG analysis. Appl Catal A. 2012;413(414):183–91.

    Google Scholar 

  10. Sharuddin SDA, Abnisa F, Daud WMAW, Aroua MK. Pyrolysis of plastic waste for liquid fuel production as prospective energy. Energy Convers Manag. 2016;115:308.

    Google Scholar 

  11. Kim S. Pyrolysis kinetics of waste PVC. Waste Manag. 2001;21:609–16.

    CAS  PubMed  Google Scholar 

  12. Crawley S, McNeill IC. Preparation and degradation of head-to-head PVC. J Polym Sci. 1978;16:2593–606.

    CAS  Google Scholar 

  13. Marcilla A, Beltrán M. Thermogravimetric kinetic study of poly(vinyl chloride) pyrolysis. Polym Degrad Stab. 1995;48:219–29.

    CAS  Google Scholar 

  14. Marongiu A, Faravelli T, Bozzano G, Dente M, Ranzi E. Thermal degradation of poly(vinyl chloride). J Anal Appl Pyrolysis. 2003;70:519–53.

    CAS  Google Scholar 

  15. Sarker M, Rashid MM. Thermal and catalytic treatment of PVC and HDPE mixture to fuel using NaHCO3. Int J Environ Eng Sci Technol Res. 2013;1(1):20–7.

    Google Scholar 

  16. Yu J, Sun L, Ma C, Quiao Y, Yao H. Ther thermal degradation of PVC: a review. Waste Manag. 2015. https://doi.org/10.1016/j.wasman.2015.11.041.

    Article  PubMed  Google Scholar 

  17. Fermin RS. Catalytic pyrolysis of poly vinyl chloride as a viable way of waste management. M.Sc. Thesis, Utah State University, USA. Logan (2016).

  18. Serrano DP, Aguado J, Escola JM. Developing advanced catalysts for the conversion of polyolefinic waste plastic into fuels and chemicals. ACS Catal. 2012;2:1924–41.

    CAS  Google Scholar 

  19. Beck JS, Vartulli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW, Mccullen SB, Higgins JB, Schlenker JL. A new family of mesoporous molecular sieves prepared with liquid crystal templates. Am Chem Soc. 1992;1992(114):10834–43.

    Google Scholar 

  20. Ahmad I, Khan MI, Ishaq M, Khan H, Gul K, Ahamd W. Catalytic efficiency of some novel nanostructured heterogeneous solid catalysts in pyrolysis of HDPE. Polym Degrad Stab. 2013;98:2512–9.

    CAS  Google Scholar 

  21. Baerlocher H, Mccusker LB, Olson DH. Atlas of zeolite framework types. 6th ed. Amsterdam: Elsevier; 2007. p. 398.

    Google Scholar 

  22. Suguio K. Dicionário de Geologia Sedimentar e áreas afins. Rio de Janeiro (1998).

  23. Selvam P, Bhatia SK, Sonwane CG. Recent advances in processing and characterization of periodic mesoporous MCM-41 silicate molecular sieves. Ind Eng Chem Res. 2001;40:3237–61.

    CAS  Google Scholar 

  24. Serrano DP, Aguado J, Escola JM. Catalytic conversion of polystyrene over HMCM-41, HZSM-5 and amorphous SiO2–Al2O3: comparison with thermal cracking. Appl Catal B: Environ. 2000;25:181–9.

    CAS  Google Scholar 

  25. Jose NM, Prado LASA. Materiais Híbridos Orgânico-Inorgânicos: Preparação e Algumas Aplicações. Quím Nova. 2005;2005(28):281–8.

    Google Scholar 

  26. Melo RAA, Giotto MV, Rocha J, Urquieta-González EA. MCM-41. Ordered mesoporous molecular sieves synthesis and characterization. Mater Res. 1999;2(3):173–9.

    CAS  Google Scholar 

  27. Santana JC, Machado SWM, Souza MJB, Pedrosa AMG. Desenvolvimento de materiais híbridos micro-mesoporosos do tipo ZSM-12/MCM-41. Quim Nova. 2015;38(3):321–7.

    CAS  Google Scholar 

  28. Bonaccorsi L, Calabrese L, Freni A, Proverbio E, Restuccia G. Zeolitess direct synthesis on the heat exchangers for adsorption heat pumps. Appl Therm Eng. 2013;50:1590–5.

    CAS  Google Scholar 

  29. Souza MJB, Silva AOS, Aquino JMFB, Fernandes JR, Araújo VJ. Kinetic study of template removal of MCM-41 nanostructured material. J Therm Anal Calorim. 2004;75:693–8.

    CAS  Google Scholar 

  30. Machado SWM. Desenvolvimento de Materiais Híbridos Micro-Mesoporosos Contendo Terras Raras para a Utilização no Craqueamento de Frações de Petróleo. M.Sc. Thesis, Federal University of Sergipe, Aracaju, Brasil (2015).

  31. Santos SCG, Machado SWM, Pedrosa AMG, Souza MJB. Development of micro–mesoporous composite material of the ZSM-12/MCM-41 type for the CO2 adsorption. J Porous Mater. 2015;22:1145–51.

    CAS  Google Scholar 

  32. Araujo AMM, Queiroz GSM, Maia DO, Gondim AD, Souza LD, Fernandes VJ Jr, Araujo AS. Fast pyrolysis of sunflower oil in the presence of microporous and mesoporous materials for production of bio-oil. Catalysts. 2018;8:261–77.

    Google Scholar 

  33. Silva AOS, Souza MJB, Pedrosa AMG, Coriolano ACF, Fernandes VJ, Araujo AS. Development of HZSM-12 zeolite for catalytic degradation of high-density polyethylene. Microporous Mesoporous Mater. 2017;244:1–6.

    CAS  Google Scholar 

  34. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquérol J, Siemieniewska T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem. 1985;57(4):603–19.

    CAS  Google Scholar 

  35. Schwanke AJ, Pergher SBC. Peneiras moleculares mesoporosas mcm-41: uma perspectiva histórica, o papel de cada reagente na síntese e sua caracterização básica. Perspectiva. 2012;36(135):113–25.

    Google Scholar 

  36. Chen C-Y, Li H-X, Davis ME. Studies on mesoporous materials I. Synthesis and characterization of MCM-41. Microporous Mater. 1993;2:17–26.

    Google Scholar 

  37. Abrevaya H, Abdo S. Catalytic naphtha cracking. In: 20th North American catalysis society meeting, Houston. 2007;1–2.

  38. Zhang M, Xu S, Wei Y, Li J, Chen J, Wang J, Zhang W, Gao S, Li X, Wang C, Liu Z. Methanol conversion on ZSM-22, ZSM-35 and ZSM-5 zeolites: effects of 10-membered ring zeolite structures on methylcyclopentenyl cations and dual cycle mechanism. R Soc Chem. 2016;6:95855–64.

    CAS  Google Scholar 

  39. Braga AAC, Morgon NH. Descrições Estruturais Cristalinas de Zeólitos. Quim Nova. 2007;30:178–88.

    CAS  Google Scholar 

  40. Groen JC. Mesoporous zeolites obtained by desilication. Ph.d. Thesis, Delft University of Technology, Delft, Netherlands (2007).

  41. Silva THA, Ribeiro, TRS, Souza MBJ, Pedrosa AMG, Oliveira HAN, Silva DCM. Pirólise termocatalítica de policloreto de vinila pós consumo utilizando catalisadores micro/mesoporosos tipo ZSM-35/MCM-41. In: XXII Congresso Brasileiro de Engenharia Química, São Paulo; 2018.

  42. Pita VJRR, Monteiro EEC. Estudos Térmicos de Misturas PVC/Plastificantes: Caracterização por DSC e TG. Polímeros: Ciência e Tecnologia. 1996;6:50–6.

    CAS  Google Scholar 

  43. Sakata Y, Uddin MA, Koizum K, Murata PK. Thermal degradation of polyethylene mixed with poly(vinyl chloride) and poly(ethyleneterephthalate). Polym Degrad Stab. 1996;53:11–117.

    Google Scholar 

  44. Serrano DP, Aguado J, Sotelo JL, Van Grieken R, Escola JM, Mendéndez JM. Catalytic properties of MCM-41 for the feedstock recycling of plastic and lubricating oil wastes. Mesoporous Mol Sieves. 1998;117:437–44.

    CAS  Google Scholar 

  45. López A, De Marco I, Caballero BM, Laresgoiti MF, Adrados A. Dechlorination of fuels in pyrolysis of PVC containing plastic wastes. Fuel Process Technol. 2011;92:253–60.

    Google Scholar 

  46. Zhao B, O’Connor D, Zhang J, Peng T, Shen Z, Tsang DCW, Hou D. Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar. Clean Prod. 2018. https://doi.org/10.1016/j.jclepro.2017.11.013.

    Article  Google Scholar 

  47. Forni L. Mass and heat transfer in catalytic reactions. Catal Today. 1999;52:147–52.

    CAS  Google Scholar 

  48. Batista LMB, Bezerra FA, Oliveira JLF, Araujo AMM, Fernandes VJ Jr, Araujo AS, Gondim AD, Alves APM. Pyrolysis of glycerol with modified vermiculite catalysts. J Therm Anal Calorim. 2019;137(6):1929–38.

    CAS  Google Scholar 

  49. Silva JMR, Morais EKL, Silveira JB, Oliveira MHR, Coriolano ACF, Fernandes VJ, Araujo AS. Improved thermogravimetric system for processing of oil sludge using HY zeolite catalyst. J Therm Anal Calorim. 2018;136:1861–8.

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge Graduate Program in Chemical Engineering (PEQ/UFS) and to the Synthesis Laboratory of Catalysts of UFAL (LSCAT) for the support in the experimental analysis of this work. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo José Barros de Souza.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Souza, M.J.B., Silva, T.H.A., Ribeiro, T.R.S. et al. Thermal and catalytic pyrolysis of polyvinyl chloride using micro/mesoporous ZSM-35/MCM-41 catalysts. J Therm Anal Calorim 140, 167–175 (2020). https://doi.org/10.1007/s10973-019-08803-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08803-7

Keywords

Navigation