Skip to main content
Log in

Cement degree of hydration in mortar and concrete

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Properties of concrete depend on the cement degree of hydration. Standard test methods proposed for quantifying cement degree of hydration employ thermogravimetric (TG) analysis which can be problematic when aggregates are added. This study aims to quantify the variances in the cement degree of hydration in mortar and concrete by comparing TG results to isothermal calorimetry. For the TG, 3 hydration models were considered; model A uses experimentally determined values for ultimate amount of chemically bound water, model B employs a constant value for this parameter, and model C employs an equation to determine the change in non-evaporable water content. Four mortar mixes containing CSA type GUL cement with and without silica fume and/or ground granulated blast-furnace slag were evaluated using TG and isothermal calorimetry at 220 h. The cement degree of hydration in 16 concrete mixes with varying composition was also measured using TG at 84 days. Maximum COV for cement degree of hydration is 2% and 6% for isothermal calorimetry and TG, respectively, revealing a slightly higher accuracy of the former. The cement degree of hydration’s standard error in mortar for models A, B and C is 0.047, 0.018, and 0.017, respectively, with a mean value of 0.704. The corresponding COV is 2% for models B and C and 7% for model A. Difference between the three models for estimating the amount of bound water is not statistically significant. For the concrete mixes, models A and B results have the same precision and accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Al-Amoudi OSB, Al-Kutti WA, Ahmad S, Maslehuddin M. Correlation between compressive strength and certain durability indices of plain and blended cement concretes. Cem Concr Compos. 2009;31(9):672–6.

    Article  Google Scholar 

  2. Kondraivendhan B, Bhattacharjee B. Prediction of strength, permeability, and hydraulic diffusivity of ordinary portland cement paste. ACI Mater J. 2014;111(2):171.

    Google Scholar 

  3. Vance K, Aguayo M, Oey T, Sant G, Neithalath N. Hydration and strength development in ternary portland cement blends containing limestone and fly ash or metakaolin. Cem Concr Compos. 2013;39:93–103.

    Article  CAS  Google Scholar 

  4. Papadakis VG, Fardis MN, Vayenas CG. Hydration and carbonation of pozzolanic cements. Materials Journal. 1992;89(2):119–30.

    CAS  Google Scholar 

  5. Deboucha W, Leklou N, Khelidj A, Oudjit MN. Hydration development of mineral additives blended cement using thermogravimetric analysis (TGA): methodology of calculating the degree of hydration. Constr Build Mater. 2017;146:687–701.

    Article  CAS  Google Scholar 

  6. Monteagudo S, Moragues A, Gálvez J, Casati M, Reyes E. The degree of hydration assessment of blended cement pastes by differential thermal and thermogravimetric analysis. Morphological evolution of the solid phases. Thermochim Acta. 2014;592:37–51.

    Article  CAS  Google Scholar 

  7. Feng X, Garboczi EJ, Bentz DP, Stutzman PE, Mason TO. Estimation of the degree of hydration of blended cement pastes by a scanning electron microscope point-counting procedure. Cem Concr Res. 2004;34(10):1787–93.

    Article  CAS  Google Scholar 

  8. Çetin C, Erdoğan ST, Tokyay M. Effect of particle size and slag content on the early hydration of interground blended cements. Cem Concr Compos. 2016;67:39–49.

    Article  Google Scholar 

  9. Tan Z, De Schutter G, Ye G, Gao Y, Machiels L. Influence of particle size on the early hydration of slag particle activated by Ca (OH) 2 solution. Constr Build Mater. 2014;52:488–93.

    Article  Google Scholar 

  10. Tang S, Cai X, He Z, Shao H, Li Z, Chen E. Hydration process of fly ash blended cement pastes by impedance measurement. Constr Build Mater. 2016;113:939–50.

    Article  CAS  Google Scholar 

  11. Schindler AK, Folliard KJ. Heat of hydration models for cementitious materials. ACI Mater J. 2005;102(1):24.

    CAS  Google Scholar 

  12. Shanahan N, Tran V, Zayed A. Heat of hydration prediction for blended cements. J Therm Anal Calorim. 2017;128(3):1279–91.

    Article  CAS  Google Scholar 

  13. Poole T. Predicting seven-day heat of hydration of hydraulic cement from standard test properties. J ASTM Int. 2009;6(6):1–10.

    Google Scholar 

  14. Riding KA, Poole JL, Folliard KJ, Juenger MCG, Schindler AK. Modeling hydration of cementitious systems. ACI Mater J. 2012;109(2):225–34.

    CAS  Google Scholar 

  15. Scrivener K, Snellings R, Lothenbach B. A practical guide to microstructural analysis of cementitious materials. Crc Press; 2016.

  16. Gaviria X, Borrachero MV, Payá J, Monzó JM, Tobón JI. Mineralogical evolution of cement pastes at early ages based on thermogravimetric analysis (TG). J Therm Anal Calorim. 2018;132(1):39–46. https://doi.org/10.1007/s10973-017-6905-0.

    Article  CAS  Google Scholar 

  17. Palou MT, Kuzielová E, Žemlička M, Tkácz J, Másilko J. Insights into the hydration of Portland cement under hydrothermal curing. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08542-9.

    Article  Google Scholar 

  18. Bhatty JI. Hydration versus strength in a portland cement developed from domestic mineral wastes—a comparative study. Thermochim Acta. 1986;106:93–103.

    Article  CAS  Google Scholar 

  19. Pane I, Hansen W. Investigation of blended cement hydration by isothermal calorimetry and thermal analysis. Cem Concr Res. 2005;35(6):1155–64.

    Article  CAS  Google Scholar 

  20. Kuzielová E, Žemlička M, Novotný R, Palou MT. Simultaneous effect of silica fume, metakaolin and ground granulated blast-furnace slag on the hydration of multicomponent cementitious binders. J Therm Anal Calorim. 2019;136(4):1527–37. https://doi.org/10.1007/s10973-018-7813-7.

    Article  CAS  Google Scholar 

  21. Gómez-Zamorano LY, Escalante-García JI. Effect of curing temperature on the nonevaporable water in Portland cement blended with geothermal silica waste. Cem Concr Compos. 2010;32(8):603–10.

    Article  Google Scholar 

  22. Mouret M, Bascoul A, Escadeillas G. Study of the degree of hydration of concrete by means of image analysis and chemically bound water. Adv Cem Based Mater. 1997;6(3–4):109–15.

    Article  CAS  Google Scholar 

  23. Panesar D, Aqel M, Rhead D, Schell H. Effect of cement type and limestone particle size on the durability of steam cured self-consolidating concrete. Cem Concr Compos. 2017;80:175–89.

    Article  CAS  Google Scholar 

  24. Schöler A, Lothenbach B, Winnefeld F, Zajac M. Hydration of quaternary Portland cement blends containing blast-furnace slag, siliceous fly ash and limestone powder. Cem Concr Compos. 2015;55:374–82.

    Article  Google Scholar 

  25. De Weerdt K, Haha MB, Le Saout G, Kjellsen KO, Justnes H, Lothenbach B. Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash. Cem Concr Res. 2011;41(3):279–91.

    Article  Google Scholar 

  26. Lothenbach B, Winnefeld F. Thermodynamic modelling of the hydration of Portland cement. Cem Concr Res. 2006;36(2):209–26.

    Article  CAS  Google Scholar 

  27. Powers TC, Brownyard TL. Studies of the physical properties of hardened Portland cement paste (part nine). J Am Concr Inst. 1946;43:469–95.

    Google Scholar 

  28. Neville AM. Properties of concrete, vol. 687. 4th ed. London: Pitman Publishing; 2011. p. 331.

    Google Scholar 

  29. Molina L. On predicting the influence of curing conditions on the degree of hydration. Cement och Betong Institututet. 1992.

  30. Schwarz N, Neithalath N. Influence of a fine glass powder on cement hydration: comparison to fly ash and modeling the degree of hydration. Cem Concr Res. 2008;38(4):429–36.

    Article  CAS  Google Scholar 

  31. Scrivener K, Juilland P, Monteiro PJ. Advances in understanding hydration of Portland cement. Cem Concr Res. 2015;78:38–56.

    Article  CAS  Google Scholar 

  32. Darquennes A, Espion B, Staquet S. How to assess the hydration of slag cement concretes? Constr Build Mater. 2013;40:1012–20.

    Article  Google Scholar 

  33. Vedalakshmi R, Raj AS, Srinivasan S, Babu KG. Quantification of hydrated cement products of blended cements in low and medium strength concrete using TG and DTA technique. Thermochim Acta. 2003;407(1–2):49–60.

    Article  CAS  Google Scholar 

  34. BASF. MasterLife SF 100: Densified Silica Fume Mineral Admixture. 2014.

  35. BASF. MasterGlenium 7700: High-Range Water-Reducing Admixture 2014.

  36. BASF. MasterMatrix VMA 362: Viscosity-Modifying Admixture 2014.

  37. ASTM. C127-15: Standard Test method for density, relative density (specific gravity), and absorption of coarse aggregate. ASTM International, West Conshohocken, PA, USA2015.

  38. ASTM. C128-15: Standard test method for density, relative density (specific gravity), and absorption of fine aggregate. ASTM International West Conshohocken, PA, USA2015.

  39. ASTM. C1611/C1611 M-14: Standard test method for slump flow of self-consolidating concrete. ASTM International, West Conshohocken, PA, USA2014.

  40. ASTM. C1758/C1758 M-15: Standard practice for fabricating test specimens with self-consolidating concrete. ASTM International, West Conshohocken, PA, USA2015.

  41. Cyr M, Lawrence P, Ringot E. Efficiency of mineral admixtures in mortars: quantification of the physical and chemical effects of fine admixtures in relation with compressive strength. Cem Concr Res. 2006;36(2):264–77.

    Article  CAS  Google Scholar 

  42. Antonovič V, Sikarskas D, Malaiškienė J, Boris R, Stonys R. Effect of pozzolanic waste materials on hydration peculiarities of Portland cement and granulated expanded glass-based plaster. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08464-6.

    Article  Google Scholar 

  43. Jensen OM, Hansen PF. Water-entrained cement-based materials: I. Principles and theoretical background. Cem Concr Res. 2001;31(4):647–54.

    Article  CAS  Google Scholar 

  44. Wang X-Y, Lee H-S. Modeling of hydration kinetics in cement based materials considering the effects of curing temperature and applied pressure. Constr Build Mater. 2012;28(1):1–13.

    Article  Google Scholar 

  45. Zhang SP, Zong L. Evaluation of relationship between water absorption and durability of concrete materials. Adv Mater Sci Eng. 2014.

Download references

Acknowledgements

This research was funded by the Natural Sciences and Engineering Research Council of Canada and McMaster University Centre for Effective Design of Structures. Materials for the experimental program were donated by LafargeHolcim Canada and BASF Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Chidiac.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chidiac, S.E., Shafikhani, M. Cement degree of hydration in mortar and concrete. J Therm Anal Calorim 138, 2305–2313 (2019). https://doi.org/10.1007/s10973-019-08800-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08800-w

Keywords

Navigation