Skip to main content
Log in

Thermal analysis, structure, spectroscopy and DFT calculations of a pharmaceutical cocrystal of salicylic acid and salicylamide

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The pharmaceutical cocrystal of salicylic acid (C7H6O3 or H2Sal) and salicylamide (C7H7NO2 or SAM) was synthesized and characterized by various techniques. The differential scanning calorimetry results confirmed the eutectic fusion showing the characteristic of the endothermic sharp peak of the solidus temperature at 108 °C. X-ray crystal structure of cocrystal is orthorhombic with space group Pna2(1). Cocrystal consists of H2Sal and a distorted phenolic group of SAM. The packing diagram of cocrystal H2Sal·SAM clearly confirmed the \(R_{8}^{2}\) acid–amide dimer heterosynthons and other inter- and intramolecular interaction bonds to stabilize the structure. In addition, the strength of the hydrogen bonds is studied using the vibrational spectral measurements, confirming the band shifting due to the intermolecular interactions. The identity of compounds by matching the absorbance spectrum was confirmed by ultraviolet spectroscopy technique. Furthermore, the experimental studies were supported by calculation results using density functional B3LYP methods with the standard 6-311++G(d,p) basis set level. The parameters such as bond lengths, bond angles and Mulliken atomic charges values have been calculated and compared, confirmed the interactions and charge transfers. The frontier molecular orbitals (HOMO–LUMO) illustrated the lower band-gap value suggesting the possible pharmaceutical activity of this as obtained H2Sal·SAM cocrystal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Brittain HG. Cocrystal systems of pharmaceutical interest: 2010. Cryst Growth Des. 2012;12:1046–54.

    Article  CAS  Google Scholar 

  2. Jones W, Samuel Motherwell WD, Trask AV. Pharmaceutical cocrystals: an emerging approach to physical property enhancement. MRS Bull. 2006;31:875–9.

    Article  CAS  Google Scholar 

  3. Aitipamula S, Wong ABH, Chow PS, Tan RBH. Pharmaceutical cocrystals of ethenzamide: structural, solubility and dissolution studies. Cryst Eng Commun. 2012;14:8515–24.

    Article  CAS  Google Scholar 

  4. Singh M, Rai RN, Rai US. Synthesis, crystal growth and physicochemical studies on a novel organic inter-molecular compound; 3,5-dinitrobenzoic acid and salicylamide system. J Cryst Growth. 2015;419:114–22.

    Article  CAS  Google Scholar 

  5. Zhou Z, Chan HK, Sung HH-Y, Tong HHY, Zheng Y. Identification of new cocrystal systems with stoichiometric diversity of salicylic acid using thermal methods. Pharm Res. 2016;33:1030–9.

    Article  CAS  PubMed  Google Scholar 

  6. Manin AN, Voronin AP, Drozd KV, Manin NG, Bauer-Brandl A, Perlovich GL. Cocrystal screening of hydroxybenzamides with benzoic acid derivatives: a comparative study of thermal and solution-based methods. Eur J Med Sci. 2014;65:56–64.

    CAS  Google Scholar 

  7. Surov AO, Manin AN, Voronin AP, Churakov AV, Perlovich GL, Vener MV. Weak interactions cause packing polymorphism in pharmaceutical two-component crystals. The case study of the salicylamide cocrystal. Cryst Growth Des. 2017;17:1425–37.

    Article  CAS  Google Scholar 

  8. Évora AOL, Castro RAE, Maria TMR, Ramos Silva M, ter Horst JH, Canotilho J, Eusébio MES. A thermodynamic based approach on the investigation of a diflunisal pharmaceutical co-crystal with improved intrinsic dissolution rate. Int J Pharm. 2014;466:68–75.

    Article  CAS  PubMed  Google Scholar 

  9. Elbagerma MA, Edwards HGM, Munshi T, Scowen IJ. Identification of a new co-crystal of salicylic acid and benzamide of pharmaceutical relevance. Anal Bioanal Chem. 2010;397:137–46.

    Article  CAS  PubMed  Google Scholar 

  10. Manin AN, Voronin AP, Manin NG, Vener MV, Shishkina AV, Lermontov AS, Perlovich GL. Salicylamide cocrystals: screening, crystal structure, sublimation thermodynamics, dissolution, and solid-state DFT calculations. J Phys Chem B. 2014;118:6803–14.

    Article  CAS  PubMed  Google Scholar 

  11. Seato CC, Parkin A. Making benzamide cocrystals with benzoic acids: the influence of chemical structure. Cryst Growth Des. 2011;11:1502–11.

    Article  CAS  Google Scholar 

  12. Nordstrom FL, Rasmuson AC. Solubility and melting properties of salicylic acid. J Chem Eng Data. 2006;51:1668–71.

    Article  CAS  Google Scholar 

  13. Nordstrom FL, Rasmuson AC. Solubility and melting properties of salicylamide. J Chem Eng Data. 2006;51:1775–7.

    Article  CAS  Google Scholar 

  14. Sasada Y, Takano T, Kakudo M. Crystal structure of salicylamide. Bull Chem Soc Jpn. 1964;37(7):940–6.

    Article  CAS  Google Scholar 

  15. Arjunan V, Kalaivani M, Ravindran P, Mohan S. Structural, vibrational and quantum chemical investigations on 5-chloro-2-hydroxybenzamide and 5-chloro-2-hydroxybenzoic acid. Spectrochim Acta Part A. 2011;79:1886–95.

    Article  CAS  Google Scholar 

  16. Bartoszek-Adamska E, Dega-Szafran Z, Krociak M, Jaskolski M, Szafran M. Hydrogen bonds in 1:1 complex of piperidine-3-carboxylic acid with salicylic acid. J Mol Struct. 2009;920:68–74.

    Article  CAS  Google Scholar 

  17. Boczar M, Boda L, Wojcik MJ. Theoretical modeling of infrared spectra of hydrogen-bonded crystals of salicylic acid. Spectrochim Acta A. 2006;64:757–60.

    Article  CAS  Google Scholar 

  18. Munshi P, Guru Row TN. Intra- and intermolecular interactions in small bioactive molecules: cooperative features from experimental and theoretical charge-density analysis. Acta Cryst. 2006;B62:612–26.

    Article  CAS  Google Scholar 

  19. Esrafili MD. Intra- and inter-molecular interactions in salicylic acid -theoretical calculations of 17O and 1H chemical shielding tensors and QTAIM analysis. Can J Chem. 2011;89:1410–8.

    Article  CAS  Google Scholar 

  20. Kwon Y. Theoretical study on salicylic acid and its analogues: intramolecular hydrogen bonding. J Mol Struct (Theochem). 2000;532:227–37.

    Article  CAS  Google Scholar 

  21. Karthick T, Balachandran V, Perumal S, Nataraj A. Spectroscopic studies, HOMO–LUMO and NBO calculations on monomer and dimer conformer of 5-nitrosalicylic acid. J Mol Struct. 2011;1005:192–201.

    Article  CAS  Google Scholar 

  22. Velcheva EA, Stamboliyska BA. Structural changes caused by the conversion of 2-hydroxybenzamide salicylamide into the oxyanion. J Mol Struct. 2008;875:264–71.

    Article  CAS  Google Scholar 

  23. Trask AV, Jones W. Crystal engineering of organic cocrystals by the solid-state grinding approach. Top Curr Chem. 2005;254:41–70.

    Article  CAS  Google Scholar 

  24. Karabacak M, Sinha L, Prasad O, Cinar Z, Cinar M. The spectroscopic (FT-Raman, FT-IR, UV and NMR), molecular electrostatic, potential, polarizability and hyperpolarizability, NBO and HOMO–LUMO analysis of monomeric and dimeric structures of 4-chloro-3,5-dinitrobenzoic acid. Spectrochim Acta Part A. 2012;93:33–46.

    Article  CAS  Google Scholar 

  25. Sheldrick GM. A short history of SHELX. Acta Crystallogr Sect A. 2008;64:112.

    Article  CAS  Google Scholar 

  26. Brandenburg K. Diamond. Bonn: Cryst Impact GbR; 1999.

    Google Scholar 

  27. Frisch J, Trucks GW, et al. Gaussian 98. Pittsburgh(PA): Gaussian Inc; 1998.

    Google Scholar 

  28. Rai US, Singh M, Rai RN. Some physicochemical studies on organic eutectics and intermolecular compounds. J Therm Anal Calorim. 2017;130:967–74.

    Article  CAS  Google Scholar 

  29. Fernandes RP, do Nascimento ALCS, Carvalho ACS, Teixeira JA, Ionashiro M, Caires JC. Mechanochemical synthesis, characterization, and thermal behavior of meloxicam cocrystals with salicylic acid, fumaric acid, and malic acid. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08118-7.

    Article  Google Scholar 

  30. Landolt HH. Schmelzgleichgewichte, Vol. II, Part 3. 6th ed. Berlin: Springer; 1950. p. 1831–910.

    Google Scholar 

  31. Babhair SA, Al-Badr AA, Aboul-Enein HY. Salicylamide in analytical profiles of drug substances. In: Florey K, editor. Analytical profiles of drug substances, vol. 13. Orlando: Academic Press; 1984. p. 521–51.

    Chapter  Google Scholar 

  32. Trivedi MK, Branton A, Trivedi D, Shettigar H, Bairwa K, Jana S. Fourier transform infrared and ultraviolet-visible spectroscopic characterization of biofield treated salicylic acid and sparfloxacin. Nat Prod Chem Res. 2015;3:1–6.

    Google Scholar 

  33. Amalanathan M, Rastogi VK, Hubert Joe I, Palafox MA, Tomar R. Density functional theory calculations and vibrational spectral analysis of 3,5-dinitrobenzoic acid. Spectrochim Acta Part A. 2011;78:1437–44.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the Thaksin University for the research grants via the Research and Development Institute, Thaksin University (RDITSU), and the National Research Management System (NRMS); project codes: 111006 and 184788.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirihattaya Phetmung.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phetmung, H., Musikapong, K. & Srichana, T. Thermal analysis, structure, spectroscopy and DFT calculations of a pharmaceutical cocrystal of salicylic acid and salicylamide. J Therm Anal Calorim 138, 1207–1220 (2019). https://doi.org/10.1007/s10973-019-08794-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08794-5

Keywords

Navigation