Skip to main content
Log in

High-speed thermogravimetric analysis of the combustion of wood and Ca-rich fuel

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Due to the increasing environmental concerns, the use of fossil fuels is being reduced. In search of less polluting ways of energy production, co-combustion offers a good way to decrease emissions and decrease the use of fossil fuels. As very high temperatures and heating rates are used in the industry, this paper presents the preliminary results of the co-combustion of the different ratios of mixtures of wood and oil shale at very high heating rates (up to 1000 °C min−1). Both oil shale and wood were analysed separately, too. The results showed that in case of wood, a higher heating rate increases the temperature range of the second decomposition step, also complicating its distinction. For the mixtures, ignition was shifted to significantly lower temperatures when comparing to oil shale. The end temperatures remained less affected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Konist A, Pihu T, Neshumayev D, Külaots I. low grade fuel oil shale and biomass co-combustion in CFB boiler. Oil Shale. 2013;30:294.

    Article  CAS  Google Scholar 

  2. Altun NE, Hicyilmaz C, Hwang J-Y, Bacgi AS, Kök MV. Oil shales in the world and Turkey; reserves, current situation and future prospects: a review. Oil Shale. 2006;23:211–27.

    CAS  Google Scholar 

  3. Baughman GL. Synthetic fuels data handbook. 2nd ed. Woodbury: Cameron Engineers Inc.; 1978.

    Google Scholar 

  4. World Energy Council. World energy resources: 2013 survey. World Energy Council; 2013. p. 11. http://www.worldenergy.org/wp-content/uploads/2013/09/Complete_WER_2013_Survey.pdf. Accessed 2 Sept 2018.

  5. Siirde A. Oil shale: global solution or part of the problem? Oil Shale. 2008;25:201–2.

    Article  Google Scholar 

  6. Robinson WE. Chapter 4: origin and characteristics of Green River oil shale. Dev Pet Sci. 1976;5:61–79.

    CAS  Google Scholar 

  7. Vučelić D, Marković V, Vučelić V, Spiridonović D, Jovančićević B, Vitorović D. Investigation of catalytic effects of indigenous minerals in the pyrolysis of Aleksinac oil shale organic matter. Org Geochem. 1992;19:445–53.

    Article  Google Scholar 

  8. Zhou H, Ma W, Zhang J, Xu Y, Zhao M. Ash deposition behavior under coal and wood co-firing conditions in a 300 kW downfired furnace. J Energy Inst. 2018;91:743–55.

    Article  CAS  Google Scholar 

  9. Cao W, Li J, Lue L. Study on the ignition behavior and kinetics of combustion of biomass. Energy Proc. 2017;142:136–41. https://doi.org/10.1016/j.egypro.2017.12.022.

    Article  CAS  Google Scholar 

  10. Hupa M. Interaction of fuels in co-firing in FBC. Fuel. 2005;84:1312–9.

    Article  CAS  Google Scholar 

  11. Basu P, Butler J, Leon MA. Biomass co-firing options on the emission reduction and electricity generation costs in coal-fired power plants. Renew Energy. 2011;36:282–8. https://doi.org/10.1016/j.renene.2010.06.039.

    Article  CAS  Google Scholar 

  12. Magdziarz A, Dalai AK, Kozin JA. Chemical composition, character and reactivity of renewable fuel ashes. Fuel. 2016;176:135–45.

    Article  CAS  Google Scholar 

  13. Zuo Z, Yu Q, Xie H, Duan W, Liu S, Qin Q. Thermogravimetric analysis of the biomass pyrolysis with copper slag as heat carrier. J Therm Anal Calorim. 2017;129:1233–41.

    Article  CAS  Google Scholar 

  14. Ma Y, Wang J, Zhang Y. TG–FTIR study on pyrolysis of waste printing paper. J Therm Anal Calorim. 2017;129:1225–32.

    Article  CAS  Google Scholar 

  15. Loo L, Maaten B, Siirde A, Pihu T, Konist A. Experimental analysis of the combustion characteristics of Estonian oil shale in air and oxy-fuel atmospheres. Fuel Process Technol. 2015;134:317–24.

    Article  CAS  Google Scholar 

  16. Bhargava S, Awaja F, Subasinghe ND. Characterisation of some Australian oil shale using thermal, x-ray and IR techniques. Fuel. 2005;84:707–15.

    Article  CAS  Google Scholar 

  17. Yao Z, Ma X, Wang Z, Chen L. Characteristics of co-combustion and kinetic study on hydrochar with oil shale: a thermogravimetric analysis. Appl Therm Eng. 2017;110:1420–7. https://doi.org/10.1016/j.applthermaleng.2016.09.063.

    Article  CAS  Google Scholar 

  18. Skreiberg A, Skreiberg O, Sandquist J, Sørum L. TGA and macro-TGA characterisation of biomass fuels and fuel mixtures. Fuel. 2011;90:2182–97.

    Article  CAS  Google Scholar 

  19. Saldarriaga JF, Aguado R, Pablos A, Amutio M, Olazar M, Bilbao J. Fast characterization of biomass fuels by thermogravimetric analysis (TGA). Fuel. 2015;140:744–51.

    Article  CAS  Google Scholar 

  20. Lin Y, Liao Y, Yu Z, Fang S, Ma X. The investigation of co-combustion of sewage sludge and oil shale using thermogravimetric analysis. Thermochim Acta. 2017;653:71–8. https://doi.org/10.1016/j.tca.2017.04.003.

    Article  CAS  Google Scholar 

  21. Liang F, Wang R, Jiang C, Yang X, Zhang T, Hu W, et al. Investigating co-combustion characteristics of bamboo and wood. Bioresour Technol. 2017;243:556–65.

    Article  CAS  Google Scholar 

  22. Jiang XM, Cui ZG, Han XX, Yu HL. Thermogravimetric investigation on combustion characteristics of oil shale and high sulphur coal mixture. J Therm Anal Calorim. 2006;85:761–4.

    Article  CAS  Google Scholar 

  23. Bazelatto Zanoni MA, Massard H, Ferreira MM. Formulating and optimizing a combustion pathways for oil shale and its semi-coke. Combust Flame. 2012;159:3224–34.

    Article  CAS  Google Scholar 

  24. Maaten B, Loo L, Konist A, Pihu T, Siirde A. Investigation of the evolution of sulphur during the thermal degradation of different oil shales. J Anal Appl Pyrolysis. 2017;128:405–11.

    Article  CAS  Google Scholar 

  25. Plötze M, Niemz P. Porosity and pore size distribution of different wood types as determined by mercury intrusion porosimetry. Eur J Wood Wood Prod. 2011;69:649–57.

    Article  CAS  Google Scholar 

  26. Burnham AK. Porosity and permeability of Green River oil shale and their changes during retorting. Fuel. 2017;203:208–13. https://doi.org/10.1016/j.fuel.2017.04.119.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birgit Maaten.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maaten, B., Konist, A. & Siirde, A. High-speed thermogravimetric analysis of the combustion of wood and Ca-rich fuel. J Therm Anal Calorim 138, 2807–2811 (2019). https://doi.org/10.1007/s10973-019-08785-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08785-6

Keywords

Navigation