Skip to main content
Log in

Structural, magnetic and thermal characterization of Fe50Se50 powders obtained by mechanical alloying

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this paper, Fe50Se50 alloy powders were synthesized from pure elemental powder by mechanical allowing. The structure, microstructure, morphology, chemical composition and thermal behavior at a function of milling times (0–39 h) were investigated by X-ray diffraction (XRD), scanning electron microscopy attached with energy-dispersive spectroscopy and differential scanning calorimetry (DSC). In addition, the interaction hyperfine and magnetic proprieties was examined by transmission Mössbauer spectroscopy (TMS) and thermomagnetic measurements (VSM) respectively. For milling times up to 6 h, the results of refinement of the X-ray diffraction pattern by MAUD software reveal the formation of the β-FeSe hexagonal, amorphous selenium and nanocrystalline α-Fe. The DSC curves show several exothermic and endothermic peaks associated with various phases’ transitions such as the exothermic peak at 103 °C related to crystallization amorphous selenium. However, after prolonging the milling time to 39 h, the XRD shows the formation of α-FeSe phase tetragonal which has plenty of technological interests especially the superconductivity. The Mössbauer spectroscopy confirmed the formation the two-phase paramagnetic hexagonal β-FeSe and α-FeSe tetragonal, according to the XRD and DSC. Measurement of magnetization (VSM) displays that saturation magnetization (MS) decreases as the milling time increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wu XJ, Shen DZ, Zhang ZZ, Zhang JY, Liu KW, Li BH, Lu YM, Yoa B, Zahao DX, Li BS, Shan CX, Fan XW, Lin HJ, Yang CL. On nature of the carriers in ferromagnetic FeSe. Appl Phys Lett. 2007;90:112105.

    Google Scholar 

  2. Wu XJ, Zhang ZZ, Zhang JY, Ju ZG, Shan DZ, Li BH, Shan CX, Lu YM. Structural and electrical characterization of single tetragonal FeSe on Si substrate. J Cryst Growth. 2007;300(2):246–63.

    Google Scholar 

  3. Ouertani B, Ouertfelli J, Saadoum M, Bessais B, Ezzaouia H, Bernède JC. Transformation of amorphous iron oxide thin films predeposited by spray pyrolysis into a single FeSe2 phase by selenisation. Sol Energy Mater Sol Cells. 2005;87(1–4):501–11.

    CAS  Google Scholar 

  4. Zhang S, Liu J, Feng J, Shao B, Li C, Zhang P. Optimization of FeSe superconducting tapes with different sheath materials and precursor powders. J Supercond Novel Magn. 2018;31–9:2747–51.

    Google Scholar 

  5. Ubale AU, Sakhare YS, Belkhedkar MR. Synthesis and characterization of spray deposited nonostructured FeSe thin films. Mater Lett. 2013;92:111–4.

    CAS  Google Scholar 

  6. Ubale AU, Skhare YS. Effet of substrate temperature on optical, structural and electrical properties of FeSe thin films deposited by spray pyrolysis technique. J Phys Chem Solids. 2013;74(10):1459–64.

    CAS  Google Scholar 

  7. Jin R, Zhao K, Pu X, Zhang M, Cai F, Yang X, Kim H, Zhao Y. Structural and photovolataic properties of FeSe2 films prepared by radio frequency magnetron sputtering. Mater Lett. 2016;179:179–81.

    CAS  Google Scholar 

  8. Sobhani A, Salavati-Niasari M. Synthesis and characterization of FeSe2 nanoparticles and FeSe2/FeO(OH) nanocomposites by hydrothermal method. J Alloy Compd. 2015;625(15):26–33.

    CAS  Google Scholar 

  9. Tao YR, Fan L, Wu ZY, Wu XC, Wang ZH. Synthesis and characterization of superconducting FeSe nanowires. J Alloy Compd. 2018;75:20–7.

    Google Scholar 

  10. Li ML, Yao QZ, Zhou GT, Fu SQ. Microwave-assisted synthesis of flower-like β-FeSe microstructure. CrystEngComm. 2010;12:3138–44.

    CAS  Google Scholar 

  11. Onar K, Yakinci ME. Solid state synthesis and characterization of bulk β-FeSe superconductors. J Alloy Compd. 2015;620(25):210–6.

    CAS  Google Scholar 

  12. Chebli A, Djekoun A, Sunol JJ, Niznansky D. Structural, thermal and hyperfine properties of Fe75Se25 powders prepared by mechanical alloying. Mater Chem Phys. 2018;217:477–85.

    CAS  Google Scholar 

  13. Feng JQ, Zhang SN, Liu JX, Ma XB, Zhang PX. Fabrication of FeSe superconducting tapes with high-energy ball milling aided PIT process. Mater Lett. 2016;170:31–4.

    CAS  Google Scholar 

  14. Xiaoting L, Zhiming G, Yongchang L, Zongqing M, Liming Y. Influence of premilling time on the sintering process and superconductive properties of FeSe. IEEE Trans Appl Supercond. 2012;22(6):7300105.

    Google Scholar 

  15. Ulbrich KF, Campos CEM. Nanosized tetragonal β-FeSe phase obtained by mechanical alloying: structural and microstructural, magnetic and electrical characterization. RCA Adv. 2018;8:8190–8.

    CAS  Google Scholar 

  16. Neikov OD. Handbook of non-ferrous metal powders technologies and application. 2nd ed. Amsterdam: Elsevier; 2019. p. 91–124.

    Google Scholar 

  17. Lutterotti L. MAUD program, CPD, Newsletter(IUCr). 2000. p P24.

  18. Rietveld HM. A profile refinement method for nuclear and magnetic structures. J Appl Cryst. 1969;2:65–71.

    CAS  Google Scholar 

  19. Stewart RF, Bently J, Goodman B. Generalized x-ray scattering factors in diatomic molecules. J Chem Phys. 1975;63(9):3786–93.

    CAS  Google Scholar 

  20. Campos CEM, De Lima JC, Grandi TA, Machado KD, Pizani PS. Structural studies of iron selenides prepared by mechanical alloying. Solid State Commun. 2002;123:179–84.

    CAS  Google Scholar 

  21. Elabbar AA, Abu-Sehly AA. Crystallization kinetics of amorphous selenium prepared by ball milling technique: evidence of three crystallization regimes. Mater Chem Phys. 2013;141(2–3):713–8.

    CAS  Google Scholar 

  22. Okamoto H. The Fe–Se (iron–selenium) system. J Phase Equilib. 1991;12:383.

    CAS  Google Scholar 

  23. Xia XJ, Huang FQ, Xie XM, Jiang MH. Preparation and superconductivity of stoichiometric β-FeSe. Europhys Lett. 2009;86:37008.

    Google Scholar 

  24. Grivel JC, Wulff AC, Zhao Y, Andersen NH, Bednareik J, Zimmermann MV. In situ observation of the formation of FeSe. Supercond Sci Technol. 2011;24:15007.

    Google Scholar 

  25. Hsu FC, Luo JY, Yeh KW, Chen TK, Huang TW, Wu PM, Lee YC, Huang YL, Chu YY, Yan DC, Wu MK. Superconductivity in the PbO-type structure α-FeSe. PNAS. 2008;105(38):1462–4.

    Google Scholar 

  26. Zahao PH, Yan W, Yang JY, Ham YL, Aldica G, Sandu V, Badica P, Nie JC. A simple fabrication of FeSe superconductors with high upper critical field. J Supercond Novel Magn. 2012;25:1781–5.

    Google Scholar 

  27. Zhang SN, Xiao BM, Liu JX, Jian FQ, Cheng SL, Ping X. Effect of high-energy ball milling time on the sintering process of FeSe superconductors. Mater Sci Forum. 2016;848:657–63.

    Google Scholar 

  28. Wu MK, Hsu FC, Yeh KW, Huang TW, Chang HH, Chen TK, Rao SM, Mok BH, Chen CL, Huang YL, Ke CT, Wu PM, Chang AM, Wu CT, Perng TP. The development of the superconducting PbO-type β-FeSe and related compounds. Phys C. 2009;469:340–9.

    CAS  Google Scholar 

  29. Zhang S, Feng J, Liu J, Shao B, Li C, Zhang P. Optimization of high-energy ball milling aided sintering process for FeSe superconductors. IEEE Trans Appl Supercond. 2017;27(5):1–4.

    Google Scholar 

  30. Takemura Y, Suto H, Honda N, Kukuno K, Saito K. Characterization of FeSe films prepared on GaAs substrate by selenization technique. J Appl Phys. 1997;81:5177.

    CAS  Google Scholar 

  31. Takemura Y, Honda N, Takahashi T, Suto H, Kakuno K. Isotropic magnetization in FeSe films on GaAs substrate. J Magn Mater. 1998;181:1319–20.

    Google Scholar 

  32. Hussain RA, Badshah A, La B. Fabrication, characterization and application of iron selenide. J Solid State Chem. 2016;243:179–89.

    CAS  Google Scholar 

  33. Chen N, Ma Z, Liu Y, Li X, Cai Q, Li H, Yu L. Influence of Sn doping on the phase formation and superconductivity of FeSe0.93. J Alloy Compd. 2014;588(5):418–21.

    CAS  Google Scholar 

  34. Harris SB, Camata RP. Double epitaxy of tetragonal and hexagonal phases in the FeSe system. J Cryst Growth. 2019;514(15):54–9.

    CAS  Google Scholar 

  35. Zhang S, Shao B, Zahao G, Liu J, Feng J, Li C, Zhang P. Influences of Fe content on the fabrication of FeSe superconductors with high-energy ball milling aided sintering process. J Alloy Compd. 2017;729:823–7.

    CAS  Google Scholar 

  36. Brand RA. The NORMOS program is available from WISSEL GmbH. D-82319 Starnberg, Germany. Nucl Instrum Methods Phys Res. 1987;B28:398.

    CAS  Google Scholar 

  37. Sklyarova A, Lindén J, Tewari GC, Rautama EL, Kappinen M. 57Fe Mössbauer study of a secondary phase in FeSe1−x with a large quadrupole splitting. Hyperfine Interact. 2014;226:341–9.

    CAS  Google Scholar 

  38. Blachowski A, Ruebenbauer K, Zukrowski J, Perzewoznik J, Wojciechowski K, Stadnik M. Mössbauer spectroscopy evidence for the lack of iron magnetic moment in superconducting FeSe. J Alloy Compd. 2010;494:1–4.

    CAS  Google Scholar 

  39. Mizuguchi Y, Furubayashi T, Deguchi K, Tsuda S, Yamagchi T, Takano Y. Mössbauer studies on FeSe and FeTe. Phys C. 2010;470:5339–83.

    Google Scholar 

  40. Khosravi S, Alizadeh M, Sharafi S, Maleh HK, Atar N. Structural, magnetic and electron transfer effect of Cr additive on Fe65Co35 nanopowder fabricated mechanical allowing. Powder Technol. 2015;279:262–8.

    CAS  Google Scholar 

  41. Ashokkumar T, Rajadurai A, Gopinath SCB. Saturation magnetization studies on iron-nickel ball milling nanopowders and spark plasma sintered specimens. J Magn Magn Mater. 2018;465:621–5.

    CAS  Google Scholar 

  42. Rathi A, Meka MV, Jayaraman TV. Synthesis of nanocrystalline equiatomic nickel-cobalt-iron alloy powders by mechanical alloying and their structural and magnetic characterization. J Magn Magn Mater. 2019;496(1):469–82.

    Google Scholar 

  43. Chebli A, Djekoun A, Boudinar N, Benabdeslem M, Otmani A, Bouzabata B, Sunol JJ. Synthesis and characterization of high-energy ball-milled nanostructured Fe25Se75. JOM. 2016;68(1):351–61.

    CAS  Google Scholar 

  44. de Lima JC, dos Santos VHF, Grandi TA. Structural study of the Zn–Se system by ball milling technique. Nano Struct Mater. 1999;11(1):51–7.

    Google Scholar 

  45. Liu G, Li J, Chen K. Reaction mechanism in fast combustion synthesis of superconducting FeSe and FeSe0.7Te0.3. Acta Mater. 2017;122:187–98.

    CAS  Google Scholar 

  46. Zhang S, Liu J, Feng J, Wang Y, Ma X, Li C, Zhang P. Fabrication mechanism of FeSe superconductors with high-energy ball milling aided sintering process. Mater Chem Phys. 2015;163(1):587–93.

    CAS  Google Scholar 

Download references

Acknowledgements

Financial support from High School of Technological Education (ENSET)–Skikda is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelhak Chebli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chebli, A., Djekoun, A., Suñol, J.J. et al. Structural, magnetic and thermal characterization of Fe50Se50 powders obtained by mechanical alloying. J Therm Anal Calorim 140, 53–62 (2020). https://doi.org/10.1007/s10973-019-08772-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08772-x

Keywords

Navigation