Skip to main content
Log in

Laboratory experimental study on water-soaked–dried bituminous coal’s thermal properties

Implications for spontaneous combustion

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the process of multi-seam mining, the measure of water exploration is usually employed for the upper coal seam to prevent and control water accumulation. The residual coal immersed in water for a long time in the upper layer is dried under the action of air leakage, leading to the enhancement of the risk of coal spontaneous combustion. Therefore, it is necessary to study the water soaking–drying process (WSD) on the spontaneous ignition characteristics of coal. In this study, a laser thermal conductivity analyzer was used to investigate the changes in thermal properties of bituminous coal collected from mines in western China after WSD. The results show that compared with the raw (unsoaked) coal samples, the thermal diffusivity, specific heat capacity, and thermal conductivity of the bituminous coal are considerably reduced after WSD; the maximum reductions in the three parameters are 11.11%, 6.64%, and 12.39%, respectively. These reduced thermal parameters indicate that after WSD, bituminous coal is more prone to self-heating, resulting in an increase in the rate of coal–oxygen compound reactions and a significantly increased risk of spontaneous combustion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wen H, Xu JC, Li L, Dai AP. Analysis of self-ignite heat accumulating process and its effect factor. J China Coal Soc. 2003;28:370–4.

    Google Scholar 

  2. Lu J. Study on assessment and forecasting methods of spontaneous trend of stockpiled coal. Nanjing: Southeast University; 2014.

    Google Scholar 

  3. Varma NK, Singh AK, Gupta ML. In-situ measurement of thermal conductivity in underground coal mines. J Mines Met Fuels. 2001;49:19–25.

    Google Scholar 

  4. Wang YJ, Zhou GQ, Wei YZ, Zhou Y. Fractal analysis of thermal conduction of loose coal. Min Sci Technol. 2010;20:831–4.

    Google Scholar 

  5. Kasenov BK, Ermagambet BT, Kasenova SB, Bekturganov NS, Nabiev MA. Heat capacity of coals from the Maikube, Sary-Adyr, and Kendyrlyk deposits in Kazakhstan. Solid Fuel Chem. 2015;49:343–8.

    Article  CAS  Google Scholar 

  6. Zhumagulov M. Experimental study of thermophysical properties of Shubarkol coal. Chem Technol Fuels Oils. 2013;49:100–7. https://doi.org/10.1007/s10553-013-0419-7.

    Article  CAS  Google Scholar 

  7. Stanger R, Xie W, Wall T, Lucas J, Mahoney M. Dynamic measurement of coal thermal properties and elemental composition of volatile matter during coal pyrolysis. J Mater Res Technol. 2014;3:2–8. https://doi.org/10.1016/j.jmrt.2013.10.012.

    Article  CAS  Google Scholar 

  8. Deng J, Li QW, Xiao Y, Shu CM. Experimental study on the thermal properties of coal during pyrolysis, oxidation, and re-oxidation. Appl Therm Eng. 2017;110:1137–52.

    Article  CAS  Google Scholar 

  9. Wen H, Lu JH, Xiao Y, Deng J. Temperature dependence of thermal conductivity, diffusion and specific heat capacity for coal and rocks from coalfield. Thermochim Acta. 2015;619:41–7. https://doi.org/10.1016/j.tca.2015.09.018.

    Article  CAS  Google Scholar 

  10. Yu JL, Tahmasebi A, Han Y, Yin F, Li X. A review on water in low rank coals: the existence, interaction with coal structure and effects on coal utilization. Fuel Process Technol. 2013;106:9–20.

    Article  CAS  Google Scholar 

  11. Wang BS, An SG, Guan WL, Wang G. Detection and governance of the spontaneous combustion high-temperature region in shallow burial and thick coal seam. Saf Coal Mines. 2012;43:128–32.

    CAS  Google Scholar 

  12. Zhai XW, Ge H, Wang K, Wu SB, Wang TY. Research on influences of water soaking–drying on coal spontaneous combustion characteristics and predictive index. China Saf Sci J. 2018;28:68–73.

    Google Scholar 

  13. Yang YL, Li ZH, Si LL, Gu FJ, Zhou YB, Qi QQ. Study governing the impact of long-term water immersion on coal spontaneous ignition. Arab J Sci Eng. 2017;42:1359–69. https://doi.org/10.13225/j.cnki.jccs.2017.0210.

    Article  CAS  Google Scholar 

  14. Zou YP, Lü RS, Yang J. Three-dimensional excitation emission matrix fluorescence spectroscopic characterization of dissolved organic matter in coal mine water. J China Coal Soc. 2012;37:1396–400.

    CAS  Google Scholar 

  15. Nakagawa H, Namba A, Böhlmann M, Miura K. Hydrothermal dewatering of brown coal and catalytic hydrothermal gasification of the organic compounds dissolving in the water using a novel Ni/carbon catalyst. Fuel. 2004;83:719–25.

    Article  CAS  Google Scholar 

  16. Zubrik A, Hredzák S, Turčániová Ľ, Lovás M, Bergmann I, Becker KD, Lukčová M, Šepelák V. Distribution of inorganic and organic substances in the hydrocyclone separated Slovak sub-bituminous coal. Fuel. 2010;89:2126–32. https://doi.org/10.1016/j.fuel.2010.03.010.

    Article  CAS  Google Scholar 

  17. Chen QH, Zhang GS, Qin RX, Tang MY. Measurements of thermal conductivity and diffusivity of loose coal using a hot-wire method. J China Univ Min Technol. 2009;38:336–40. https://doi.org/10.1016/j.geothermics.2015.12.010.

    Article  Google Scholar 

  18. Pang D. Experimental research on thermal properties of coal and rock. Fuxin: Liaoning Technical University; 2015.

    Google Scholar 

  19. Li JW, Tang QJ, Xu JC, Wen H. Measurement of thermal conductivity in loose coal bulk. J Liaoning Tech Univ. 2004;23:5–8. https://doi.org/10.3969/j.issn.1008-0562.2004.01.002.

    Article  CAS  Google Scholar 

  20. Tang QJ, Zhang GS, Chen QH. Analysis of influential factors in heat coefficient of bulky coal seam. Jiangxi Coal Sci Technol. 2006;4:24–6. https://doi.org/10.3969/j.issn.1006-2572.2006.04.015.

    Article  Google Scholar 

  21. Xu T, Wang DM, He QL. The study of the critical moisture content at which coal has the most high tendency to spontaneous combustion. Int J Coal Prep Util. 2013;33:117–27. https://doi.org/10.1080/19392699.2013.769435.

    Article  CAS  Google Scholar 

  22. Clemens AH, Matheson TW. The role of moisture in the self-heating of low-rank coals. Fuel. 1996;75:891–5.

    Article  CAS  Google Scholar 

  23. Kadioğlu Y, Varamaz M. The effect of moisture content and air-drying on spontaneous combustion characteristics of two Turkish lignites. Fuel. 2003;82:1685–93. https://doi.org/10.1016/S0016-2361(02)00402-7.

    Article  CAS  Google Scholar 

  24. Beamish BB, Hamilton GR. Effect of moisture content on the R70 self-heating rate of Callide coal. Int J Coal Geol. 2005;64:133–8. https://doi.org/10.1016/j.coal.2005.03.011.

    Article  CAS  Google Scholar 

  25. Tang YB, Li YF, Xue S, Wang JF, Li RC. Experimental investigation of long-term water immersion effect on spontaneous combustion parameters and microscopic characteristics of bituminous. J China Coal Soc. 2017;42:2642–8. https://doi.org/10.13225/j.cnki.Jccs.2017.0210.

    Article  Google Scholar 

  26. Choi H, Thiruppathiraja C, Kim S, Rhim Y, Lim J, Lee S. Moisture readsorption and low temperature oxidation characteristics of upgraded low rank coal. Fuel Process Technol. 2011;92:2005–10. https://doi.org/10.1016/j.fuproc.2011.05.025.

    Article  CAS  Google Scholar 

  27. Zhang ZQ, Yan KF. Molecular dynamics simulation of oxygen diffusion in dry and water-containing brown coal. Mol Phys. 2011;109:2367–74.

    Article  CAS  Google Scholar 

  28. Green U, Aizenstat Z, Gieldmeister F, Cohen H. CO2 adsorption inside the pore structure of different rank coals during low temperature oxidation of open air coal stockpiles. Energy Fuels. 2011;25:4211–5.

    Article  CAS  Google Scholar 

  29. Sun XM. Research on dissolved substances from coal and influence on propensity of coal to spontaneous combustion in the long-term soak. Xuzhou: China University of Mining and Technology. 2015.

    Google Scholar 

  30. Zhai XW, He L, Wu SB, Wang K, Zhang JC, He YJ. Study of structural changes in dried bituminous coal soaked in water and its effect on spontaneous combustion in coal mines. In: Proceedings of the 11th international mine ventilation congress. 2019;593–607. https://doi.org/10.1007/978-981-13-1420-9_50.

    Google Scholar 

  31. Song ZY, Huang XY, Luo MG, Gong JH, Pan XH. Experimental investigation on diffusion-kinetic interaction of heterogeneous reaction of coal. J Therm Anal Calorim. 2017;129:1625–37.

    Article  CAS  Google Scholar 

  32. Parker WJ, Jenkins RJ, Butler CP, Abbott GL. Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J Appl Phys. 1961;32:1679–84.

    Article  CAS  Google Scholar 

  33. Zhu TS, Ertekin E. Phonons, localization, and thermal conductivity of diamond nanothreads and amorphous graphene. Nano Lett. 2016;16:4763–72. https://doi.org/10.1021/acs.nanolett.6b00557.

    Article  CAS  PubMed  Google Scholar 

  34. Larkin JM, Mcgaughey AJH. Thermal conductivity accumulation in amorphous silica and amorphous silicon. Phys Rev B. 2014;89:620–37. https://doi.org/10.1103/PhysRevB.89.144303.

    Article  CAS  Google Scholar 

  35. Mostafa MS, Afify N, Gaber A, Zaid EFA. Investigation of thermal properties of some basalt samples in Egypt. J Therm Anal Calorim. 2004;75:179–88. https://doi.org/10.1023/B:JTAN.0000017340.19830.45.

    Article  CAS  Google Scholar 

  36. Abdulagatov IM, Abdulagatova ZZ, Kallaev SN, Bakmaev AG, Ranjith PG. Thermal-diffusivity and heat-capacity measurements of sandstone at high temperatures using laser flash and DSC methods. Int J Thermophys. 2015;36:658–91.

    Article  CAS  Google Scholar 

  37. Mcgaughey AJH, Kaviany M. Thermal conductivity decomposition and analysis using molecular dynamics simulations: part II. Complex silica structures. Int J Heat Mass Transf. 2004;47:1799–816. https://doi.org/10.1016/j.ijheatmasstransfer.2003.11.002.

    Article  CAS  Google Scholar 

  38. Melchior E, Luther H. Measurement of true specific heats of bituminous coals of different rank, and of a high-temperature coke, in the temperature range 30–350°C. Fuel. 1982;61:1071–9.

    Article  CAS  Google Scholar 

  39. Xiao Y, Chen LG, Li QW, Zhang XY, Bai ZJ, Wang K. Identification and determination of the thermophysical properties of coal at lower temperature. J Saf Environ. 2018;18:137–41.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 5197-4236) and the Key R&D Project in Shaanxi Province (Grant No. 2018KW-035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Jun Pan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, XW., Pan, WJ., Wu, SB. et al. Laboratory experimental study on water-soaked–dried bituminous coal’s thermal properties. J Therm Anal Calorim 139, 3691–3700 (2020). https://doi.org/10.1007/s10973-019-08769-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08769-6

Keywords

Navigation