Skip to main content
Log in

Thermoanalytical behavior of neodymium nitrate hexahydrate Nd(NO3)3·6H2O

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The hexahydrate Nd(NO3)3·6H2O melts in its water of crystallization at 328 K. There are no phase transitions at least above 233 K. Similar to other nitrates in the lanthanide series, its thermal decomposition is a gradual process, which entails the formation of a cluster 6[Nd(NO3)3·6H2O] after the condensation of 6 mol of the initial monomer. During this process, a multicomponent multiphase system exists far from equilibrium and is continuously maintained in this state until normal neodymium oxide is formed. The main volatile products of thermolysis are water, nitric acid, azeotrope 68% HNO3–32% H2O, nitrogen dioxide and oxygen. The proposed mechanism satisfactorily explains the mass losses in accordance with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lacerda S, Toth E. Lanthanide complexes in molecular magnetic resonance imaging and theranostics. ChemMedChem. 2017;12:883–94.

    Article  CAS  Google Scholar 

  2. Rare Earth Coordination Chemistry. Chunui Haung. Asian ed. Singapore: Wiley; 2011.

    Google Scholar 

  3. Hijazi AK, Taha ZF, Ajlouni AM, Al-Momani WM, Idris IM, Hamra TA. Synthesis and biological activities of lanthanide(III) nitrate complexes with N-(2-hydroxynaphthalen-1-yl) methylene) nicotinohydrazide Schiff base. J Med Chem. 2017;13:77–84.

    Article  CAS  Google Scholar 

  4. Rogers DJ, Taylor NJ, Toogood GE. Tetraaquatrinitratoneodymium(III) dihydrate, [Nd(NO3)3(H2O)4]·2H2O. Acta Cryst. 1983;39:939–41.

    Google Scholar 

  5. Balboul B, Myhoub YZ. The characterization of the formation course of neodymium oxide from different precursors: a study of thermal decomposition and combustion process. J Anal Appl Pyrol. 2010;89:95–101.

    Article  CAS  Google Scholar 

  6. Melnikov P, Nascimento VA, Consolo LZZ. Thermal decomposition of gallium nitrate hydrate and modeling of thermolysis products. J Therm Anal Calorim. 2012;107:1117–21.

    Article  CAS  Google Scholar 

  7. Melnikov P, Nascimento VA, Consolo LZZ. Computerized modeling of intermediate compounds formed during thermal decomposition of gadolinium nitrate hydrate. Russ J Phys Chem. 2012;86:1659–63.

    Article  CAS  Google Scholar 

  8. Melnikov P, Nascimento VA, Consolo LZZ, Silva AF. Mechanism of thermal decomposition of yttrium nitrate hexahydrate Y(NO3)3·6H2O and modeling of intermediate oxynitrates. J Therm Anal Calorim. 2013;111:115–9.

    Article  CAS  Google Scholar 

  9. Melnikov P, Nascimento VA, Arkhangelsky IV, Consolo LZZ. Thermal decomposition mechanism of aluminum nitrate octahydrate and characterization of intermediate products by the technique of computerized modeling. J Therm Anal Calorim. 2013;111:543–8.

    Article  CAS  Google Scholar 

  10. Melnikov P, Nascimento VA, Arkhangelsky IV, Consolo LZZ, de Oliveira LCS. Thermolysis mechanism of chromium nitrate nonahydrate and computerized modeling of intermediate products. J Therm Anal Calorim. 2013;114:1021–7.

    Article  CAS  Google Scholar 

  11. Melnikov P, Nascimento VA, Arkhangelsky IV, Consolo LZZ, de Oliveira LCS. Thermal decomposition mechanism of iron(III) nitrate and characterization of intermediate products by the technique of computerized modeling. J Therm Anal Calorim. 2014;115:145–51.

    Article  CAS  Google Scholar 

  12. Melnikov P, Arkhangelsky IV, Nascimento VA, Silva AF, Consolo LZZ, de Oliveira LCS, Herrero AS. Thermolysis mechanism of dysprosium hexahydrate nitrate Dy(NO3)3·6H2O and modeling of intermediate decomposition products. J Therm Anal Calorim. 2015;122:571–8.

    Article  CAS  Google Scholar 

  13. Melnikov P, Arkhangelsky IV, Nascimento VA, Silva AF, Consolo LZZ. Thermolysis mechanism of samarium nitrate hexahydrate. J Therm Anal Calorim. 2014;118:1537–41.

    Article  CAS  Google Scholar 

  14. Melnikov P, Nascimento VA, Arkhangelsky IV, Silva AF, Zanoni Consolo LZ. Thermogravimetric study of the scandium nitrate hexahydrate thermolysis and computer modeling of intermediate oxynitrates. J Therm Anal Calorim. 2015;119:1073–9.

    Article  CAS  Google Scholar 

  15. Melnikov P, Arkhangelsky IV, Nascimento VA, de Oliveira LCS, Silva AF, Zanoni LZ. Thermal analysis of europium nitrate hexahydrate Eu(NO3)3·6H2O. J Therm Anal Calorim. 2016;128:12–6.

    Google Scholar 

  16. Melnikov P, Arkhangelsky IV, Nascimento VA, Oliveira LCS, Guimarães WR, Zanoni LZ. Thermal decomposition of praseodymium nitrate hexahydrate Pr(NO3)3·6H2O. J Therm Anal Calorim. 2018;133:929–34.

    Article  CAS  Google Scholar 

  17. Strydom CA, Van Vuuren CPJ. The thermal decomposition of lanthanum(III), praseodymium(III) and europium(III) nitrates. Thermochim Acta. 1988;124:277–83.

    Article  CAS  Google Scholar 

  18. NIST Chemistry WebBook. NIST standard reference database number 69. www.http//webbook.nist/chemistry. Accessed 22 Sept 2018.

  19. Horsley LH. Azeotrope data: tables of azeotropes and nonazeotropes. Washington, DC: American Chemical Society; 1952.

    Google Scholar 

  20. Liu Y, Bluck D, Brana-Melero F. Static and dynamic simulation of NOx absorption tower based on a hybrid-kinetic equilibrium reaction model. In: Eden MR, Siirola JD, Towler GP, editors. Proceedings of the 8th international conference on foundations of computer-aided process design. Amsterdam: Elsevier; 2014. p. 363.

    Google Scholar 

  21. S.C. Atkinson. Crystal structures and phase transitions in the rare earth oxides. Ph.D. thesis, University of Salford; 2013.

  22. Tian H, Guo YN, Zhao L, Tang J, Liu Z. Hexanuclear dysprosium(III) compound incorporating vertex- and edge-sharing Dy3 triangles exhibiting single-molecule-magnet behavior. Inorg Chem. 2011;50:8688–90.

    Article  CAS  Google Scholar 

  23. Giester G, Unfried P, Zak Z. Synthesis and crystal structure of some new rare earth basic nitrates II: [Ln6O(OH)8(H2O)12(NO3)6](NO3)2·xH2O, Ln = Sm, Dy, Er; x(Sm) = 6, x(Dy) = 5, x(Er) = 4. J Alloys Compd. 1997;257:175–81.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financed by Conselho Nacional de Pesquisa (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Melnikov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melnikov, P., Arkhangelsky, I.V., Nascimento, V.A. et al. Thermoanalytical behavior of neodymium nitrate hexahydrate Nd(NO3)3·6H2O. J Therm Anal Calorim 139, 3493–3497 (2020). https://doi.org/10.1007/s10973-019-08748-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08748-x

Keywords

Navigation