Skip to main content
Log in

Development of soot formation sub-model for Scania DC-9 diesel engine in the steady-state condition

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The purpose of the present study is to provide a sub-model for the formation and oxidation of soot based on chemical kinetics for the DC-9 Scania diesel engine. The present model is a phenomenological soot model, consisting of nine main stages in the formation of soot including acetylene formation, precursors formation, particle inception, coagulation, surface growth, oxygen, and hydroxyl surface oxidation and oxidation of acetylene and precursors. Acetylene is considered as the main ingredient in the formation of soot, and together with the carbon precursors, the two middle species of the soot mechanism control the soot formation process. Also, in this sub-model, the hydroxyl surface oxidation step has been added. The present sub-model has advantages over two-stage models and is capable of predicting mass growth of soot, precursors, particle diameter and its number. The following inputs of the soot sub-model, including pressure, temperature, volume and unburned fuel content, are derived from a zero-dimensional combustion model developed in this study. Also, an equilibrium sub-model has been used to calculate the concentration of some of the participating species in the soot sub-model. A comparison of the theoretical results with relevant experimental results shows that the present sub-model has been able to predict the pure amount of produced soot accurately. The average particle diameter is about 40 nm, which is very small in the range of particulate matter. The sub-model also predicts that the number of particles to be 1019 particles per unit volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

P :

Pressure (kPa)

m :

The number of carbon atoms in the fuel

T :

Temperature (K)

N A :

Avogadro number

N :

Number of particles per unit volume (particle m−3)

d soot :

Diameter of soot (m3)

C B :

Dimensionless coefficient

MW:

Molecular mass (kg kmol−1)

y s :

Molecular concentration of soot (mol cm−3)

ρ :

Density (g m−3)

τ :

Characteristic time (s)

γ :

The collision efficiency

fluid:

Liquid

wall:

Wall

s:

Soot

c:

Carbon

References

  1. Karagulian F, Belis CA, Dora CFC, Prss-Ustun AM, Bonjour S, Adair-Rohani H, Amann M. Contributions to cities’ ambient particulate matter (PM): a systematic review of local source contributions at global level. Atmos Environ. 2015. https://doi.org/10.1016/j.atmosenv.2015.08.087.

    Article  Google Scholar 

  2. Agarwal AK, Dhar A, Sharma N, Shukla PC. Engine exhaust particulates. Singapore: Springer Nature Singapore Pte Ltd; 2019.

    Book  Google Scholar 

  3. Damanik N, Ong HC, Tong CW, Mahlia TM, Silitonga AS. A review on the engine performance and exhaust emission characteristics of diesel engines fueled with biodiesel blends. Environ Sci Pollut Res. 2018;25:15307–25. https://doi.org/10.1007/s11356-018-2098-8.

    Article  CAS  Google Scholar 

  4. Wu BY, Zhan Q, Zhang SK, Nie XK, Li YH, Su W. Effect of heavy-duty diesel engine operating parameters on particle number and size distribution at low speed condition. Int J Automot Technol. 2018;19:623–33. https://doi.org/10.1007/s12239-018-0059-3.

    Article  Google Scholar 

  5. Wang T, Quiros DC, Thiruvengadam A, Pradhan S, Hu S, Huai T, Lee ES, Zhu Y. Total particle number emissions from modern diesel, natural gas, and hybrid heavy-duty vehicles during on-road operation. J Environ Sci Technol. 2017;51(12):6990–8. https://doi.org/10.1021/acs.est.6b06464.

    Article  CAS  Google Scholar 

  6. Raza M, Chen L, Leach F, Ding S. A review of particulate number (PN) emissions from gasoline direct injection (GDI) engines and their control techniques. Energies. 2018;11(6):1–26. https://doi.org/10.3390/en11061417.

    Article  CAS  Google Scholar 

  7. Fushimi A, Saitoh K, Fujitani Y, Takegawa N. Identification of jet lubrication oil as major component of aircraft exhaust nanoparticles. J Atmos Chem Phys Discuss. 2019;19:6389–99. https://doi.org/10.5194/acp-19-6389-2019.

    Article  CAS  Google Scholar 

  8. Lin B, Gu C, Han D, Zhan R, Zhai J, Guan B, Li Z. Size distributions of soot particles in premixed flames of gasoline distillates. J Combust Flame. 2019;208:472–9. https://doi.org/10.1016/j.combustflame.2019.06.014.

    Article  CAS  Google Scholar 

  9. Zhai J, Liu W, Lin B, Lin H, Huang Z, Han D. Size distribution of nascent soot in premixed n-hexane, cyclohexane, and methylcyclohexane flames. J Energy Fuel. 2019;33:5740–8. https://doi.org/10.1021/acs.energyfuels.9b00904.

    Article  CAS  Google Scholar 

  10. Masekameni DM, Brouwer D, Makonese T, Rampedi IT, Gulumian M. Size distribution of ultrafine particles generated from residential fixed-bed coal combustion in a typical Brazier. Aerosol Air Qual Res. 2018;18:2618–32. https://doi.org/10.4209/aaqr.2018.03.0105.

    Article  CAS  Google Scholar 

  11. Vicente ED, Alves CA. An overview of particulate emissions from residential biomass combustion. J Atmos Res. 2018;199:159–85. https://doi.org/10.1016/j.atmosres.2017.08.027.

    Article  CAS  Google Scholar 

  12. Trojanowski R, Fthenakis V. Nanoparticle emissions from residential wood combustion: a critical literature review, characterization, and recommendations. Renew Sustain Energy Rev. 2019;103:515–28. https://doi.org/10.1016/j.rser.2019.01.007.

    Article  CAS  Google Scholar 

  13. Tesner PA, Smegiriova TD, Knorre VG. Kinetics of dispersed carbon formation. Combust Flame. 1971;17(2):253–60. https://doi.org/10.1016/S0010-2180(71)80168-2.

    Article  CAS  Google Scholar 

  14. Hiroyasu H, Kadota T, Aria M. Development and use of a spray combustion modeling to predict diesel engine efficiency and pollutant emissions: part 1 Combustion modeling. Bull JSME. 1983;26(214):569–75. https://doi.org/10.1299/jsme1958.26.569.

    Article  Google Scholar 

  15. Patterson MA, Kong SC, Hampson GJ, Reitz RD. Modeling the effects of fuel injection characteristics on diesel engine soot and NOx emissions. Warrendale: SAE International; 1994. p. 1–17. https://doi.org/10.4271/940523.

    Book  Google Scholar 

  16. Nagle J, Strikland-Constable RF. Oxidation of carbon between 1000-2000 C. J Carbon. 1962;1(3):333–8. https://doi.org/10.1016/0008-6223(64)90288-X.

    Article  Google Scholar 

  17. Fusco A, Kelecy ALK, Foster DE. Application of a phenomenological soot model to diesel engine combustion. In: Conference of ASME. 1994; https://doi.org/10.1115/ICES2008-1629

  18. Frenklach M. Reaction mechanism of soot formation in flames. Phys Chem Chem Phys. 2002. https://doi.org/10.1039/C9CP01200A.

    Article  Google Scholar 

  19. Liu Y, Tao F, Foster DE, Reitz RD. Application of a multiple-step phenomenological soot model to HSDI for diesel multiple injection modeling. Warrendale: SAE International; 2005. p. 1–16. https://doi.org/10.4271/2005-01-0924.

    Book  Google Scholar 

  20. Tao F, Reitz RD, Foster DE, Liu Y. Nine-step phenomenological model of diesel engine validated over a wide range of engine conditions. Int J Therm Sci. 2009;48(6):1223–34. https://doi.org/10.1016/j.ijthermalsci.2008.08.014.

    Article  CAS  Google Scholar 

  21. Rao V, Honnery D. Application of a multi-step soot model in a thermodynamic diesel engine model. Fuel. 2014;135:269–78. https://doi.org/10.1016/j.fuel.2014.06.046.

    Article  CAS  Google Scholar 

  22. Rohani B, Park SS, Bae C. Effect of injection strategy on smoothness, emissions and soot characteristics of PCCI-conventional diesel mode transition. Appl Therm Eng. 2016;93:1033–42. https://doi.org/10.1016/j.applthermaleng.2015.09.075.

    Article  CAS  Google Scholar 

  23. Arad A, Sher E, Enden G. Modeling Soot formation in diesel-biodiesel flames. Fuel. 2017;206:437–52. https://doi.org/10.1016/j.fuel.2017.06.024.

    Article  CAS  Google Scholar 

  24. Andaveh M, Kashani BO. Investigating of turbocharger matching phenomena for Scania-DC9 diesel engine with focus on inertia of its moving part. In: The 9th international conference on internal combustion engines (Iranian). 2015; vol. 1, p. 1–11.

  25. Matin M, Kashani BO. Development of a sub-model for the carbon monoxide formation in Scania DC-9 Diesel Engine at transient condition. In: The 25th international ISME conference (Iranian), 2106; pp 1–2.

  26. Choi MY, Hamin A, Mulholland GW, Kashiwagi T. Simultaneous optical measurement of the pre-mixed flames. Combust Flame. 1994;99(1):174–86. https://doi.org/10.1016/0010-2180(94)90088-4.

    Article  CAS  Google Scholar 

  27. Smith OI. Fundamentals of Soot formation in flames with application to diesel particulate emissions. Prog Energy Combust Sci. 1981;7(4):275–91. https://doi.org/10.1016/0360-1285(81)90002-2.

    Article  CAS  Google Scholar 

  28. Kent JH, Wagner HG. Soot measurements in laminar ethylene diffusion flames. Combust Flame. 1982;47:53–65. https://doi.org/10.1016/0010-2180(82)90088-8.

    Article  CAS  Google Scholar 

  29. Fenimore CP, Jones GW. Oxidation of soot by hydroxyl radicals. Phys Chem. 1967;71(3):593–7. https://doi.org/10.1021/j100862a021.

    Article  CAS  Google Scholar 

  30. Neoh KG, Howard JB, Sarofim AF. Effect of oxidation on the physical structure of soot. In: Symposium (international), in combustion. 1985; vol. 20(1), p. 951–957; https://doi.org/10.1016/S0082-0784(85)80584-1.

    Article  Google Scholar 

  31. Budiyanto A, Sugiarto B, Anang B. Multidimensional CFD simulation of a diesel engine combustion: a comparison of combustion models. In: Proceedings of the FISITA 2012 world automotive congress. 2012; pp 879–893. https://doi.org/10.1007/978-3-642-33750-5_5.

    Google Scholar 

  32. Sung N, Lee S, Kim H, Kim B. A numerical study on the generation and oxidation of a direct injection diesel engine. In: The proceedings of the institution of mechanical engineers, part D: journal of automobile engineering 2003; vol. 217(5), p. 403–413. https://doi.org/10.1243/095440703321645115.

    Google Scholar 

  33. Jafar Madar S, Barzegar R, Hoseinzadeh M, Khalilarya SH. A numerical investigation of the effects of creating an air-cell and insulating the piston on combustion process and emission formation in DI diesel engines. J Fuel Combust (Iranian). 2010;2:17–30.

    Google Scholar 

  34. Singh S, Reitz RD, Musculus MPB. 2-Color thermometry experiments and high-speed imaging of multi-mode diesel engine combustion. Warrendale: SAE International; 2005. p. 1–17. https://doi.org/10.4271/2005-01-3842.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behzad Omidi Kashani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omidi Kashani, B., Bidarian, B. Development of soot formation sub-model for Scania DC-9 diesel engine in the steady-state condition. J Therm Anal Calorim 139, 2499–2508 (2020). https://doi.org/10.1007/s10973-019-08747-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08747-y

Keywords

Navigation