Skip to main content
Log in

Preparation and performances characterization of HNIW/NTO-based high-energetic low vulnerable polymer-bonded explosive

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

To satisfy the energy and security requirements of the explosives, it is necessary to develop high-energetic low vulnerable explosive. As the representatives of high-energetic explosives and low vulnerable explosives, hexanitrohexaazaisowurtzitane (HNIW) and 3-nitro-1,2,4-triazole-5-one (NTO) are used to research high-energetic low vulnerable polymer-bonded explosive (PBX) in this study. Based on the formulation of PAX-11 (94 mass% HNIW, 2.4 mass% CAB, 3.6 mass% BDNPA/F), some HNIW is replaced by NTO to reduce the vulnerability of the PBX during this work. Solution−water suspension method was used to prepare a series PBXs with different formulations. The explosion probability method, differential scanning calorimeter and accelerating rate calorimeter are used to evaluate the hazards of different PBX molding powders. And the thermal vulnerabilities, mechanical properties and energy levels of PBX columns are assessed by slow cook-off tests, tensile strengthes and detonation velocities, respectively. Moreover, finite element numerical simulations are adopted to study the transient temperature distributions, ignition time and ignition locations of the PBX columns during slow cook-off. The investigated results show that when the mass fraction of HNIW and NTO is 50% and 44%, respectively, the PBX passes the slow cook-off test and the detonation velocity reaches 8685 m s−1. To balance the energy and vulnerability of the PBXs, we obtain a high-energetic low vulnerable PBX formulation (50 mass% HNIW, 44 mass% NTO, 2.4 mass% CAB, 3.6 mass% BDNPA/F, 0.5 mass% additional graphite) which can be used in the warhead of the high-explosive anti-tank cartridge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ou YX. Explosives. Beijing: Beijing Institute of Technology Press; 2014.

    Google Scholar 

  2. Becuwe A, Delclos A. Low sensitivity explosive compounds for low vulnerability warheads. Propell Explos Pyrot. 1993;18:1–10.

    Article  CAS  Google Scholar 

  3. Mukundan T, Nair JK, Purandare GN, Talawar MB, Nath T, Asthana SN. Low vulnerable sheet explosive based on 3-nitro-1,2,4-triazol-5-one. J Propul Power. 2006;22:1348–52.

    Article  CAS  Google Scholar 

  4. He GS, Yang ZJ, Zhou XY, Zhang JH, Pan LP, Liu SJ. Polymer bonded explosives (PBXs) with reduced thermal stress and sensitivity by thermal conductivity enhancement with graphene nanoplatelets. Compos Sci Technol. 2016;131:22–31.

    Article  CAS  Google Scholar 

  5. Elbeih A, Pachman J, Zeman S, Trzcinski WA, Suceska M. Study of plastic explosives based on attractive cyclic nitramines: Part II. Detonation characteristics of explosives with polyfluorinated binders. Propell Explos Pyrot. 2013;38:238–43.

    Article  CAS  Google Scholar 

  6. Niu H, Chen SS, Shu QH, Li LJ, Jin SH. Preparation, characterization and thermal risk evaluation of dihydroxylammonium 5, 5-bistetrazole-1, 1-diolate based polymer bonded explosive. J Hazard Mater. 2017;338:208–17.

    Article  CAS  Google Scholar 

  7. GJB 772A, Explosive Test Method, Beijing, China, 1997.

  8. Townsend DI, Tou JC. Thermal hazard evaluation by an accelerating rate calorimeter. Thermochim Acta. 1980;37:1–30.

    Article  CAS  Google Scholar 

  9. Sridhar VP, Surianarayanan M, Sivapirakasam SP, Mandal AB. Adiabatic thermo kinetics and process safety of pyrotechnic mixtures. J Therm Anal Calorim. 2012;109:1387–95.

    Article  Google Scholar 

  10. Palmer SJP, Field JE. The deformation and fracture of β-HMX. Proc R Soc A. 1982;383:399–407.

    CAS  Google Scholar 

  11. Palmer SJP, Field JE, Huntley JM. Deformation, strengths and strains to failure of polymer bonded explosives. Proc R Soc A. 1993;440:399–419.

    CAS  Google Scholar 

  12. Chen PW, Ding YS. Mechanical behavior and deformation and failure mechanisms of polymer bonded explosives. Chin J Energ Mater. 2000;8:161–4.

    CAS  Google Scholar 

  13. Berenbaum R, Brodie I. Measurement of the tensile strength of brittle materials. Br J Appl Phys. 1959;10:282–6.

    Article  Google Scholar 

  14. Zhao YG, Fu H, Li YL, Chen R, Wen SG. Dynamic tensile mechanical properties of three types of PBX. China J Energy Mater. 2011;19:194–9.

    CAS  Google Scholar 

  15. Asante DO, Kim SH, Chae JS, Kim HS, Oh M. CFD cook-off simulation and thermal decomposition of confined high energetic material. Propell Explos Pyrot. 2015;40:699–705.

    Article  CAS  Google Scholar 

  16. Bao F, Zhang GZ, Jin SH, Zhang CY, Niu H. Thermal decomposition and safety assessment of 3,30-dinitrimino-5,50-bis(1H-1,2,4-triazole) by DTA and ARC. J Therm Anal Calorim. 2018;132:805–11.

    Article  CAS  Google Scholar 

  17. Bao F, Zhang GZ, Jin SH. Thermal decomposition behavior and thermal stability of DABT·2DMSO. J Therm Anal Calorim. 2018;131:3185–91.

    Article  CAS  Google Scholar 

  18. Zhang GY, Jin SH, Li LJ, Li ZH, Shu QH, Wang DQ, Zhang B, Li YK. Evaluation of thermal hazards and thermo-kinetic parameters of 3-amino-4-amidoximinofurazan by ARC and TG. J Therm Anal Calorim. 2016;126:1223–30.

    Article  CAS  Google Scholar 

  19. Li X, Chen SS, Zhang GY, Yu ZY, Li JX, Chen ML, Ma X, Xiang KL, Jin SH, Chen Y. Influence of energetic plasticizer bis(2,2-dinitropropyl)acetal/formal on properties of ε-CL-20 based pressed polymer-bonded explosives. Mater Express. 2017;7:216–22.

    Article  CAS  Google Scholar 

  20. Zhang GY, Jin SH, Li LJ, Li YK, Wang DQ, Li W, Zhang T, Shu QH. Thermal hazard assessment of 4,10-dinitro-2,6,8,12-tetraoxa-4,10-diazaisowutrzitane (TEX) by accelerating rate calorimeter (ARC). J Therm Anal Calorim. 2016;126:467–71.

    Article  CAS  Google Scholar 

  21. Zhang CY, Jin SH, Ji JW, Jing BC, Bao F, Zhang GY, Shu QH. Thermal hazard assessment of TNT and DNAN under adiabatic condition by using accelerating rate calorimeter (ARC). J Therm Anal Calorim. 2018;131:89–93.

    Article  CAS  Google Scholar 

  22. Bao F, Zhang GZ, Jin SH, Zhang YP, Li LJ. Thermal decomposition and thermal stability of potassium 3,30-dinitrimino-5,50-bis(1H-1,2,4-triazole). J Therm Anal Calorim. 2018;133:1563–9.

    Article  CAS  Google Scholar 

  23. Townsend DI, Tou JC. Thermal hazard evaluation by an accelerating rate calorimeter. Thermochim Acta. 1980;37:1–30.

    Article  CAS  Google Scholar 

  24. Zou HM, Chen SS, Li X, Jin SH, Niu H, Wang F, Chao H, Fang T, Shu QH. Preparation, thermal investigation and detonation properties of ε-CL-20-based polymer-bonded explosives with high energy and reduced sensitivity. Mater Express. 2017;7:199–208.

    Article  CAS  Google Scholar 

  25. Lv JY, Che LP, Chen WH, Gao HS, Peng MJ. Kinetic analysis and self-accelerating decomposition temperature (SADT) of dicumyl peroxide. Thermochim Acta. 2013;571:60–3.

    Article  CAS  Google Scholar 

  26. Wang JF, Chen SS, Jin SH, Wang JY, Niu H, Zhang GY, Wang XJ, Wang DX. Size-dependent effect on thermal decomposition and hazard assessment of TKX-50 under adiabatic condition. Propell Explos Pyrot. 2018;43:488–95.

    Article  CAS  Google Scholar 

  27. Fisher HG, Goetz DD. Determination of self-accelerating decomposition temperatures using the accelerating rate calorimeter. J Loss Prev Process Ind. 1991;4:305–16.

    Article  Google Scholar 

  28. Liu JH, Yang ZJ, Liu SJ, Zhang JH, Liu YG. Effects of fluoropolymer binders on the mechanical properties of TATB-based PBX. Propell Explos Pyrot. 2018;43:664–70.

    Article  CAS  Google Scholar 

  29. Mulford RN, Swift D. Sensitivity of PBX-9502 after ratchet growth. AIP Conf Proc. 2012;1426:311–4.

    Article  CAS  Google Scholar 

  30. Sun YB, Hui JM, Cao XM. Military use blended explosives. Beijing: Weapon Industry Press; 1995.

    Google Scholar 

  31. Jin SH, Song QC. Explosive theory. Xian: Northwestern Polytechnical University Press; 2010.

    Google Scholar 

  32. Hoffman DM. Dynamic mechanical signatures of Viton A and plastic bonded explosives based on this polymer. Polym Eng Sci. 2003;43:139–56.

    Article  CAS  Google Scholar 

  33. Aydemir E, Ulas A. A numerical study on the thermal initiation of a confined explosive in 2-D geometry. J Hazard Mater. 2011;186:396–400.

    Article  CAS  Google Scholar 

  34. Halil I, Fatih G. Cook-off analysis of a propellant in a 7.62 mm barrel by experimental and numerical methods. Appl Therm Eng. 2017;112:484–96.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijie Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, G., Jin, S., Chen, M. et al. Preparation and performances characterization of HNIW/NTO-based high-energetic low vulnerable polymer-bonded explosive. J Therm Anal Calorim 139, 3589–3602 (2020). https://doi.org/10.1007/s10973-019-08743-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08743-2

Keywords

Navigation