Skip to main content
Log in

A study on thermohydraulic characteristics of fluid flow through microchannels

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

At present, miniaturization of the devices in order to make them for effective performance, reliability and ease at cost is the primary need of any nation. In this direction, the role of microchannels can play an important role in the further development of industrial growth. The increased demand of the microchips in the industrial areas has increased the number of transistors for the improved functionality which leads to the emission of the higher heat flux, which is already a big challenge in the electronic sector. In the present paper, a comprehensive review on microchannels has been done regarding single-phase and multi-phase studies. In the present paper, an intensive review of the thermal and hydraulic characteristics of fluid flow in microchannels at different hydraulic diameters and their effects on performance has been done. The effects of the various parameters such as the Reynolds number (Re), Nusselt number (Nu), friction factor (f), pressure drop (P), working fluid and cross-sectional geometry of duct, as well as the hydrodynamic and thermal aspects, has been also studied. It was concluded through the literature study that transition from laminar to turbulent is very much affected by channel cross-sectional geometry, aspect ratio, channel wall roughness and compressibility effects. Also, researchers only explored the laminar region for its pressure drop and heat transfer characteristics, while the turbulent flow regime is yet to be explored. It was observed that most of the correlation over-estimated the value of pressure drop in multi-phase flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

A :

Area

Pw:

Wetted perimeter

a :

Channel height (m)

b :

Channel width (m)

C :

Lockhart–Martinelli parameter

C*:

Characteristics quantity

Co:

Convective number

v :

Velocity

L or l:

Length

f:

Friction factor

\({\text{Re}}^{ *}\) :

Laminar equivalent Reynolds number

F fl :

Fluid surface parameter

Pr:

Prandtl number

h :

Heat transfer coefficient (W m−2 K−1)

k :

Thermal conductivity (W m−1 K−1)

Nu:

Nusselt number

Pr:

Prandtl number

T :

Temperature (K)

We:

Weber number

Ac:

Area of cross section

Di:

Internal diameter

BL:

Boiling number

Bo:

Bond number

C P :

Specific heat (J kg−1 K−1)

P 0 :

Poiseuille number

D h :

Hydraulic diameter (m)

D :

Diameter (internal)

k(x):

Hagenbach factor

Fr:

Froude number

G :

Mass velocity (kg m−2 s−1)

Nu:

Nusselt number

J :

Total mixture volumetric flux (m s−1)

Ma:

Mach number

P :

Pressure (Pa)

Re:

Reynolds number

U :

Velocity (m s−1)

\(\tau\) :

Shear stress (Pa)

\(\mu\) :

Dynamic viscosity (Pa s−1)

\(\rho\) :

Density (kg m−3)

\(\alpha\) :

Channel aspect ratio

\(\lambda\) :

Laplace constant

\(\alpha\) :

Aspect ratio

e :

Roughness of the pipe

κ :

Hagenbach factor

\(\emptyset_{\text{LO}}\) :

Two-phase multiplier (for liquids only)

\(\sigma\) :

Surface tension (N m−1)

app:

Apparent

crit:

Critical

tot:

Total

TP:

Two-phase mixture

sat:

Saturated

Exp:

Experimental

FD:

Fully developed

L:

Liquid

V:

Vapor

References

  1. Tuckerman DB, Pease RFW. High-performance heat sinking for VLSI. IEEE Electron Device Lett. 1981;2(5):126–9.

    Article  Google Scholar 

  2. Phillips RJ. Forced-convection, liquid-cooled, microchannel heat sinks, US4894709A, 09 March 1988.

  3. Hahn R, et al. High power multichip modules employing the planar embedding technique and microchannel water heat sinks. IEEE Trans Compon Packag Manuf Technol A. 1997;20(4):432–40.

    Article  CAS  Google Scholar 

  4. Martin PM, Bennett WD, Johnston JW. Microchannel heat exchangers for advanced climate control. 1995. https://www.spiedigitallibrary.org. Accessed 1 Aug 2019.

  5. Vydai AV, Soshelev SB, Reznikov GV, Kharitonov VV, Cheremuskhin SV. Thermophysical design of the parameters of a computer board with a microchannel cooling system. J Eng Phys Thermophys. 1993;64(1):80–6.

    Article  Google Scholar 

  6. Beach R, et al. Modular microchannel cooled heatsinks for high average power laser diode arrays. IEEE J Quantum Electron. 1992;28(4):966–76.

    Article  Google Scholar 

  7. Mundinger D, et al. Demonstration of high-performance silicon microchannel heat exchangers for laser diode array cooling. Appl Phys Lett. 1988;53(12):1030–2.

    Article  CAS  Google Scholar 

  8. Missaggia LJ, Walpole JN, Liau ZL, Phillips RJ. Microchannel heat sinks for two-dimensional high-power-density diode laser arrays. IEEE J Quantum Electron. 1989;25(9):1988–92.

    Article  CAS  Google Scholar 

  9. Bazdar H, Toghraie D, Pourfattah F, Akbari OA, Nguyen HM, Asadi A. Numerical investigation of turbulent flow and heat transfer of nanofluid inside a wavy microchannel with different wavelengths. J Therm Anal Calorim. 2019;135(6):3471–83.

    Article  CAS  Google Scholar 

  10. Serizawa A, Feng Z, Kawara Z. Two-phase flow in microchannels. Exp Therm Fluid Sci. 2002;26(6–7):703–14.

    Article  CAS  Google Scholar 

  11. Mehendale SS, Jacobi AM, Shah RK. Fluid flow and heat transfer at micro- and meso-scales with application to heat exchanger design. Appl Mech Rev. 2009;53(7):175.

    Article  Google Scholar 

  12. Kandlikar SG, Grande WJ. Evaluation of single phase flow in microchannels for high heat flux chip cooling—thermohydraulic performance enhancement and fabrication technology. Heat Transf Eng. 2004;25(8):5–16.

    Article  CAS  Google Scholar 

  13. Palm B. Heat transfer in microchannels. Microscale Thermophys Eng. 2001;5(3):155–75.

    Article  CAS  Google Scholar 

  14. Stephan P. Microscale evaporative heat transfer: modelling and experimental validation. 2019. p. 13. http://ihtcdigitallibrary.com/. Accessed 2 Aug 2019.

  15. Halelfadl S, Adham AM, Mohd-Ghazali N, Maré T, Estellé P, Ahmad R. Optimization of thermal performances and pressure drop of rectangular microchannel heat sink using aqueous carbon nanotubes based nanofluid. Appl Therm Eng. 2014;62(2):492–9.

    Article  CAS  Google Scholar 

  16. Warrier GR, Kim CJ, Ju YS. Microchannel cooling device with perforated side walls: design and modeling. Int J Heat Mass Transf. 2014;68:174–83.

    Article  Google Scholar 

  17. Yu XF, et al. A study on the hydraulic and thermal characteristics in fractal tree-like microchannels by numerical and experimental methods. Int J Heat Mass Transf. 2012;55(25–26):7499–507.

    Article  Google Scholar 

  18. Wang L, Wu W, Li X. Numerical and experimental investigation of mixing characteristics in the constructal tree-shaped microchannel. Int J Heat Mass Transf. 2013;67:1014–23.

    Article  Google Scholar 

  19. Wang XQ, Mujumdar AS, Yap C. Thermal characteristics of tree-shaped microchannel nets for cooling of a rectangular heat sink. Int J Therm Sci. 2006;45(11):1103–12.

    Article  CAS  Google Scholar 

  20. Senn SM, Poulikakos D. Laminar mixing, heat transfer and pressure drop in tree-like microchannel nets and their application for thermal management in polymer electrolyte fuel cells. J Power Sources. 2004;130(1–2):178–91.

    Article  CAS  Google Scholar 

  21. Tuo H, Hrnjak P. Effect of venting the periodic reverse vapor flow on the performance of a microchannel evaporator in air-conditioning systems. Int J Heat Mass Transf. 2014;69:66–76.

    Article  Google Scholar 

  22. Chamkha AJ, Groşan T, Pop I. Fully developed free convection of a micropolar fluid in a vertical channel. Int Commun Heat Mass Transf. 2002;29(8):1119–27.

    Article  Google Scholar 

  23. Chamkha AJ, Grosan T, Pop I. Fully developed mixed convection of a micropolar fluid in a vertical channel. Int J Fluid Mech Res. 2003;30(3):251–63.

    Article  Google Scholar 

  24. Chamkha AJ. Hydromagnetic two-phase flow in a channel. Int J Eng Sci. 1995;33(3):437–46.

    Article  CAS  Google Scholar 

  25. Chamkha AJ. Unsteady laminar hydromagnetic fluid–particle flow and heat transfer in channels and circular pipes. Int J Heat Fluid Flow. 2000;21(6):740–6.

    Article  Google Scholar 

  26. Chamkha AJ. Unsteady laminar hydromagnetic flow and heat transfer in porous channels with temperature-dependent properties. Int J Numer Methods Heat Fluid Flow. 2001;11(5–6):430–48.

    Article  CAS  Google Scholar 

  27. Chamkha AJ. On laminar hydromagnetic mixed convection flow in a vertical channel with symmetric and asymmetric wall heating conditions. Int J Heat Mass Transf. 2002;45(12):2509–25.

    Article  Google Scholar 

  28. Chamkha AJ, Molana M, Rahnama A, Ghadami F. On the nanofluids applications in microchannels: a comprehensive review. Powder Technol. 2018;332:287–322.

    Article  CAS  Google Scholar 

  29. Ibáñez G, López A, López I, Pantoja J, Moreira J, Lastres O. Optimization of MHD nanofluid flow in a vertical microchannel with a porous medium, nonlinear radiation heat flux, slip flow and convective–radiative boundary conditions. J Therm Anal Calorim. 2019;135(6):3401–20.

    Article  CAS  Google Scholar 

  30. Shashikumar NS, Gireesha BJ, Mahanthesh B, Prasannakumara BC, Chamkha AJ. Entropy generation analysis of magneto-nanoliquids embedded with aluminium and titanium alloy nanoparticles in microchannel with partial slips and convective conditions. Int J Numer Methods Heat Fluid Flow. 2018.

  31. Khodabandeh E, Rozati SA, Joshaghani M, Akbari OA, Akbari S, Toghraie D. Thermal performance improvement in water nanofluid/GNP–SDBS in novel design of double-layer microchannel heat sink with sinusoidal cavities and rectangular ribs. J Therm Anal Calorim. 2019;136(3):1333–45.

    Article  CAS  Google Scholar 

  32. Park CY, Hrnjak P. Experimental and numerical study on microchannel and round-tube condensers in a R410a residential air-conditioning system. Int J Refrig. 2008;31(5):822–31.

    Article  CAS  Google Scholar 

  33. Qu X, Shi J, Qi Z, Chen J. Experimental study on frosting control of mobile air conditioning system with microchannel evaporator. Appl Therm Eng. 2011;31(14–15):2778–86.

    Article  Google Scholar 

  34. Qi Z, Zhao Y, Chen J. Performance enhancement study of mobile air conditioning system using microchannel heat exchangers. Int J Refrig. 2010;33(2):301–12.

    Article  CAS  Google Scholar 

  35. Tuo H, Hrnjak P. Periodic reverse flow and boiling fluctuations in a microchannel evaporator of an R134a mobile air-conditioning system. SAE Int J Mater Manuf. 2013;6(3):540–8.

    Article  Google Scholar 

  36. Jin J, Chen J, Chen Z. Development and validation of a microchannel evaporator model for a CO2 air-conditioning system. Appl Therm Eng. 2011;31(2–3):137–46.

    Article  CAS  Google Scholar 

  37. Yun R, Kim Y, Park C. Numerical analysis on a microchannel evaporator designed for CO2 air-conditioning systems. Appl Therm Eng. 2007;27(8–9):1320–6.

    Article  CAS  Google Scholar 

  38. Kim M-H, Bullard CW. Development of a microchannel evaporator model for a CO2 air-conditioning system. Energy. 2001;26(10):931–48.

    Article  CAS  Google Scholar 

  39. Moallem E, Cremaschi L, Fisher DE, Padhmanabhan S. Experimental measurements of the surface coating and water retention effects on frosting performance of microchannel heat exchangers for heat pump systems. Exp Therm Fluid Sci. 2012;39:176–88.

    Article  CAS  Google Scholar 

  40. Xu B, et al. Experimental investigation of frost and defrost performance of microchannel heat exchangers for heat pump systems. Appl Energy. 2013;103:180–8.

    Article  Google Scholar 

  41. Liu TL, Fu BR, Pan C. Boiling heat transfer of co- and counter-current microchannel heat exchangers with gas heating. Int J Heat Mass Transf. 2013;56(1–2):20–9.

    Article  CAS  Google Scholar 

  42. Shao LL, Yang L, Zhang CL. Comparison of heat pump performance using fin-and-tube and microchannel heat exchangers under frost conditions. Appl Energy. 2010;87(4):1187–97.

    Article  Google Scholar 

  43. Zou Y, Hrnjak PS. Experiment and visualization on R134a upward flow in the vertical header of microchannel heat exchanger and its effect on distribution. Int J Heat Mass Transf. 2013;62(1):124–34.

    Article  CAS  Google Scholar 

  44. Dasgupta ES, Askar S, Ismail M, Fartaj A, Quaiyum MA. Air cooling by multiport slabs heat exchanger: an experimental approach. Exp Therm Fluid Sci. 2012;42:46–54.

    Article  Google Scholar 

  45. Han Y, Liu Y, Li M, Huang J. A review of development of micro-channel heat exchanger applied in air-conditioning system. Energy Procedia. 2012;14:148–53.

    Article  Google Scholar 

  46. Garimella S, Determan MD, Meacham JM, Lee S, Ernst TC. Microchannel component technology for system-wide application in ammonia/water absorption heat pumps. Int J Refrig. 2011;34(5):1184–96.

    Article  CAS  Google Scholar 

  47. Fronk BM, Garimella S. Water-coupled carbon dioxide microchannel gas cooler for heat pump water heaters: part II—model development and validation. Int J Refrig. 2011;34(1):17–28.

    Article  CAS  Google Scholar 

  48. Park CY, Hrnjak P. Effect of heat conduction through the fins of a microchannel serpentine gas cooler of transcritical CO2 system. Int J Refrig. 2007;30(3):389–97.

    Article  CAS  Google Scholar 

  49. Languri EM, Hooman K. Slip flow forced convection in a microchannel with semi-circular cross-section. Int Commun Heat Mass Transf. 2011;38(2):139–43.

    Article  Google Scholar 

  50. Liu N, Li JM, Sun J, Wang HS. Heat transfer and pressure drop during condensation of R152a in circular and square microchannels. Exp Therm Fluid Sci. 2013;47:60–7.

    Article  CAS  Google Scholar 

  51. Hrnjak P, Litch AD. Microchannel heat exchangers for charge minimization in air-cooled ammonia condensers and chillers. Int J Refrig. 2008;31(4):658–68.

    Article  CAS  Google Scholar 

  52. Pettersen J, Hafner A, Skaugen G, Rekstad H. Development of compact heat exchangers for CO2 air-conditioning systems. Int J Refrig. 1998;21(3):180–93.

    Article  CAS  Google Scholar 

  53. Goodman C, Fronk BM, Garimella S. Transcritical carbon dioxide microchannel heat pump water heaters: part I—validated component simulation modules. Int J Refrig. 2011;34(4):859–69.

    Article  CAS  Google Scholar 

  54. Morini GL, Lorenzini M, Salvigni S, Spiga M. Thermal performance of silicon micro heat-sinks with electrokinetically-driven flows. Int J Therm Sci. 2006;45(10):955–61.

    Article  CAS  Google Scholar 

  55. Sarangi RK, Bhattacharya A, Prasher RS. Numerical modelling of boiling heat transfer in microchannels. Appl Therm Eng. 2009;29(2–3):300–9.

    Article  Google Scholar 

  56. Zhang Q, Tang D, Li D, Peng Y. Numerical and experimental study on in-plane bending of microchannel aluminum flat tube. J Mater Process Technol. 2010;210(14):1876–84.

    Article  CAS  Google Scholar 

  57. Agarwal A, Bandhauer TM, Garimella S. Measurement and modeling of condensation heat transfer in non-circular microchannels. Int J Refrig. 2010;33(6):1169–79.

    Article  CAS  Google Scholar 

  58. Al-Hajri E, Shooshtari AH, Dessiatoun S, Ohadi MM. Performance characterization of R134a and R245fa in a high aspect ratio microchannel condenser. Int J Refrig. 2013;36(2):588–600.

    Article  CAS  Google Scholar 

  59. Vakili-Farahani F, Agostini B, Thome JR. Experimental study on flow boiling heat transfer of multiport tubes with R245fa and R1234ze(E). Int J Refrig. 2013;36(2):335–52.

    Article  CAS  Google Scholar 

  60. Moallem E, Hong T, Cremaschi L, Fisher DE. Experimental investigation of adverse effect of frost formation on microchannel evaporators, part 1: effect of fin geometry and environmental effects. Int J Refrig. 2013;36(6):1762–75.

    Article  Google Scholar 

  61. Thompson SM, Ma HB, Wilson C. Investigation of a flat-plate oscillating heat pipe with Tesla-type check valves. Exp Therm Fluid Sci. 2011;35(7):1265–73.

    Article  Google Scholar 

  62. Nielsen KK, Engelbrecht K, Christensen DV, Jensen JB, Smith A, Bahl CRH. Degradation of the performance of microchannel heat exchangers due to flow maldistribution. Appl Therm Eng. 2012;40:236–47.

    Article  Google Scholar 

  63. Kim NH, Byun HW, Sim YS. Upward branching of two-phase refrigerant in a parallel flow minichannel heat exchanger. Exp Therm Fluid Sci. 2013;51:189–203.

    Article  CAS  Google Scholar 

  64. Szczukiewicz S, Borhani N, Thome JR. Fine-resolution two-phase flow heat transfer coefficient measurements of refrigerants in multi-microchannel evaporators. Int J Heat Mass Transf. 2013;67:913–29.

    Article  CAS  Google Scholar 

  65. Alam T, Lee PS, Yap CR, Jin L. A comparative study of flow boiling heat transfer and pressure drop characteristics in microgap and microchannel heat sink and an evaluation of microgap heat sink for hotspot mitigation. Int J Heat Mass Transf. 2013;58(1–2):335–47.

    Article  Google Scholar 

  66. Fani B, Abbassi A, Kalteh M. Effect of nanoparticles size on thermal performance of nanofluid in a trapezoidal microchannel-heat-sink. Int Commun Heat Mass Transf. 2013;45:155–61.

    Article  CAS  Google Scholar 

  67. Hung TC, Sheu TS, Yan WM. Optimal thermal design of microchannel heat sinks with different geometric configurations. Int Commun Heat Mass Transf. 2012;39(10):1572–7.

    Article  Google Scholar 

  68. Ramezanizadeh M, Nazari MA, Ahmadi MH, Chen L. A review on the approaches applied for cooling fuel cells. Int J Heat Mass Transf. 2019;139:517–25.

    Article  CAS  Google Scholar 

  69. Umavathi JC, Mohiuddin S, Sheremet MA. MHD flow in a vertical channel under the effect of temperature dependent physical parameters. Chin J Phys. 2019;58:324–38.

    Article  CAS  Google Scholar 

  70. Ramezanizadeh M, Nazari MA, Ahmadi MH, Lorenzini G, Pop I. A review on the applications of intelligence methods in predicting thermal conductivity of nanofluids. J Therm Anal Calorim. 2019;3:1–17.

    Google Scholar 

  71. Abchouyeh MA, Fard OS, Mohebbi R, Sheremet MA. Enhancement of heat transfer of nanofluids in the presence of sinusoidal side obstacles between two parallel plates through the lattice Boltzmann method. Int J Mech Sci. 2019;156:159–69.

    Article  Google Scholar 

  72. Ramezanizadeh M, Alhuyi Nazari M, Ahmadi MH, Açıkkalp E. Application of nanofluids in thermosyphons: a review. J Mol Liq. 2018;272:395–402.

    Article  CAS  Google Scholar 

  73. Ramezanizadeh M, Alhuyi Nazari M, Ahmadi MH, Chau KW. Experimental and numerical analysis of a nanofluidic thermosyphon heat exchanger. Eng Appl Comput Fluid Mech. 2019;13(1):40–7.

    Google Scholar 

  74. Chamkha AJ. Flow of two-immiscible fluids in porous and nonporous channels. J Fluids Eng. 2002;122(1):117.

    Article  Google Scholar 

  75. Kumar JP, Umavathi JC, Chamkha AJ, Pop I. Fully-developed free-convective flow of micropolar and viscous fluids in a vertical channel. Appl Math Model. 2010;34(5):1175–86.

    Article  Google Scholar 

  76. Umavathi JC, Chamkha AJ, Mateen A, Al-Mudhaf A. Unsteady two-fluid flow and heat transfer in a horizontal channel. Heat Mass Transf. 2005;42(2):81–90.

    Article  CAS  Google Scholar 

  77. Umavathi JC, Chamkha AJ, Sridhar KSR. Generalized plain couette flow and heat transfer in a composite channel. Transp Porous Media. 2010;85(1):157–69.

    Article  Google Scholar 

  78. Umavathi JC, Sheremet MA, Mohiuddin S. Combined effect of variable viscosity and thermal conductivity on mixed convection flow of a viscous fluid in a vertical channel in the presence of first order chemical reaction. Eur J Mech B/Fluids. 2016;58:98–108.

    Article  Google Scholar 

  79. Umavathi JC, Kumar JP, Sheremet MA. Heat and mass transfer in a vertical double passage channel filled with electrically conducting fluid. Phys A Stat Mech Appl. 2017;465:195–216.

    Article  CAS  Google Scholar 

  80. Daniels BJ, Liburdy JA, Pence DV. Experimental studies of adiabatic flow boiling in fractal-like branching microchannels. Exp Therm Fluid Sci. 2011;35(1):1–10.

    Article  CAS  Google Scholar 

  81. Peiyi W, Little WA. Measurement of friction factors for the flow of gases in very fine channels used for microminiature Joule–Thomson refrigerators. Cryogenics (Guildf). 1983;23(5):273–7.

    Article  Google Scholar 

  82. Pfahler J, Harley J, Bau H, Zemel J. Liquid transport in micron and submicron channels. Sens Actuators A: Phys. 1990;22(1–3):431–4.

    Article  Google Scholar 

  83. Peng XF, Wang BX, Peterson GP, Ma HB. Experimental investigation of heat transfer in flat plates with rectangular microchannels. Int J Heat Mass Transf. 1995;38(1):127–37.

    Article  CAS  Google Scholar 

  84. Wang L, Yang JT, Lyu PC. An overlapping crisscross micromixer. Chem Eng Sci. 2007;62(3):711–20.

    Article  CAS  Google Scholar 

  85. Peng XF, Wang B-X. Forced convection and flow boiling heat transfer for liquid flowing through microchannels. Int J Heat Mass Transf. 1993;36(14):3421–7.

    Article  CAS  Google Scholar 

  86. Peng XF, Peterson GP. Convective heat transfer and flow friction for water flow in microchannel structures. Int J Heat Mass Transf. 1996;39(12):2599–608.

    Article  CAS  Google Scholar 

  87. Yang G, Ebadian MA, Soliman HM. An experimental and theoretical study of laminar fluid flow and heat transfer in helical coils. 2019. pp. 321–326. https://ci.nii.ac.jp/. Accessed 5 Aug 2019.

  88. Hwang YW, Kim MS. The pressure drop in microtubes and the correlation development. Int J Heat Mass Transf. 2006;49(11–12):1804–12.

    Article  CAS  Google Scholar 

  89. Yen T-H, Kasagi N, Suzuki Y. Forced convective boiling heat transfer in microtubes at low mass and heat fluxes. Int J Multiph Flow. 2003;29:1771–92.

    Article  CAS  Google Scholar 

  90. Celata GP, Cumo M, Mariani A, Nariai H, Inasaka F. Influence of channel diameter on subcooled high heat fluxes. Int J Heat Mass Transf. 1993;36(13):3407–10.

    Article  CAS  Google Scholar 

  91. Shah RK, London AL. Chapter II—differential equations and boundary conditions. In: Laminar flow forced convect. Ducts. 1978, pp. 5–36.

  92. Nikuradse J. Laws of flow in rough pipes, vol. 3, no. November. Washington: National Advisory Committee for Aeronautics. 1950.

    Google Scholar 

  93. Colebrook CF, et al. Turbulent flow in pipes, with particular reference to the transition region between the smooth and rough pipe laws. (includes plates). J Inst Civ Eng. 1939;12(8):393–422.

    Article  Google Scholar 

  94. Kandlikar SG, Steinke ME. Single-phase liquid friction factors in microchannel. Int J Therm Sci. 2006;45:1073–83.

    Article  CAS  Google Scholar 

  95. Jones OC. An improvement in the calculation of turbulent friction in rectangular ducts. J Fluids Eng. 1976;98(2):173.

    Article  Google Scholar 

  96. Kumar V, Paraschivoiu M, Nigam KDP. Single-phase fluid flow and mixing in microchannels. Chem Eng Sci. 2011;66(7):1329–73.

    Article  CAS  Google Scholar 

  97. Harley J, Bau H, Zemel JN, Dominko V. Fluid flow in micron and submicron size channels. 2003, pp. 25–28. http://ieeexplore.ieee.org/. Accessed 5 Aug 2019.

  98. Missaggia LJ, Walpole JN, Liau ZL, Phillips RJ. Microchannel heat sinks for two-dimensional high-power-density diode laser arrays. Quantum Electron IEEE J. 1989;25(9):1988–92.

    Article  CAS  Google Scholar 

  99. Pfahler J, Harley J, Bau HH, Zemel J. Liquid and gas transport in small channels. In: Micromechanics and MEMS: classic and seminal papers to 1990. 1997. pp. 478–486.

  100. Riddle R. Design calculations for the microchannel heatsink. 1991. http://adsabs.harvard.edu/. Accessed 6 Aug 2019.

  101. Rahman MM, Gui F. Experimental measurements of fluid flow and heat transfer in microchannel cooling passages in a chip substrate. In: The ASME international electronics packaging conference. 1993. pp. 685–692.

  102. Rahman MM, Gui F. Design, fabrication, and testing of microchannel heat sinks for aircraft avionics cooling. In: Intersociety energy conversion engineering conference. 1993. p. 1.

  103. Urbanek W, Zemel JN, Bau HH. An investigation of the temperature dependence of Poiseuille numbers in microchannel flow. J Micromech Microeng. 1993;3(4):206–9.

    Article  CAS  Google Scholar 

  104. Gui F, Scaringe R. Enhanced heat transfer in the entrance region of microchannels. 1995.

  105. Wilding P, Pfahier J, Bau HH, Zemel JN, Krlcka LJ. Manipulation and flow of biological fluids in straight channels micromachined in silicon. 1994. vol. 40, no. 1, pp. 43–47. http://clinchem.aaccjnls.org/. Accessed 7 Aug 2019.

  106. Peng XF, Peterson GP. The effect of thermofluid and geometrical parameters on convection of liquids through rectangular microchannels. Int J Heat Mass Transf. 1995;38(4):755–8.

    Article  CAS  Google Scholar 

  107. Jiang XN, Zhou ZY, Yao J, Li Y, Ye XY. Micro-fluid flow in microchannel. 2005. pp. 317–320.

  108. Cuta JM, Bennett WD, McDonald CE, Ravigururajan TS. Fabrication and testing of microchannel heat exchangers. Microlithogr Metrol Micromach. 2004;2640:152–60.

    Article  Google Scholar 

  109. Cuta JM, McDonald CE, Shekarriz A. Forced convection heat transfer in parallel channel array microchannel heat exchanger. New York: ASME; 1996.

    Google Scholar 

  110. Jiang XN, Zhou ZY, Huang XY, Liu CY. Laminar flow through microchannels used for microscale cooling systems. In: Proceedings of the 1997 1st electronic packaging technology conference (Cat. No. 97TH8307). 2002. pp. 119–122.

  111. Harms TM, Kazmierczak MJ, Gerner FM. Developing convective heat transfer in deep rectangular microchannels. Int J Heat Fluid Flow. 1999;20(2):149–57.

    Article  CAS  Google Scholar 

  112. Tso CP, Mahulikar SP. Multimode heat transfer in two-dimensional microchannel. American Society of Mechanical Engineers, EEP, 26-2. 1999.

  113. Vidmar RJ. Microchannel cooling for a high-energy particle transmission window, an RF transmission window, and VLSI heat dissipation. IEEE Trans Plasma Sci. 1998;26(3):1031–43.

    Article  CAS  Google Scholar 

  114. Adams TM, Abdel-Khalik SI, Jeter SM, Qureshi ZH. An experimental investigation of single-phase forced convection in microchannels. Int J Heat Mass Transf. 1998;41(6–7):851–7.

    Article  CAS  Google Scholar 

  115. Mala GM, Li D. Flow characteristics of water in microtubes. Int J Heat Fluid Flow. 1999;20(2):142–8.

    Article  CAS  Google Scholar 

  116. Papautsky I, Brazzle J, Ameel T, Frazier AB. Laminar fluid behavior in microchannels using micropolar fluid theory. Sens Actuators, A Phys. 1999;73(1–2):101–8.

    Article  CAS  Google Scholar 

  117. Meinhart CD, Wereley ST, Santiago JG. PIV measurements of a microchannel flow. Exp Fluids. 1999;27(5):414–9.

    Article  Google Scholar 

  118. Pfund D, Rector D, Shekarriz A, Popescu A, Welty J. Pressure drop measurements in a microchannel. AIChE J. 2000;46(8):1496–507.

    Article  CAS  Google Scholar 

  119. Qu W, Mala GM, Li D. Heat transfer for water flow in trapezoidal silicon microchannels. Int J Heat Mass Transf. 2000;43(21):3925–36.

    Article  CAS  Google Scholar 

  120. Qu W, Mohiuddin M, Li D. Pressure-driven water flows in trapezoidal silicon microchannels. Int J Heat Mass Transf. 2000;43(3):353–64.

    Article  Google Scholar 

  121. Rahman MM. Measurements of heat transfer in microchannel heat sinks. Int Commun Heat Mass Transf. 2000;27(4):495–506.

    Article  Google Scholar 

  122. Ren L, Qu W, Li D. Interfacial electrokinetic effects on liquid flow in microchannels. Int J Heat Mass Transf. 2001;44(16):3125–34.

    Article  CAS  Google Scholar 

  123. Chung PM-Y, Kawaji M, Kawahara A, Shibata Y. “Two-phase flow through square and circular microchannels: Effect of channel geometry, vol. 1. Fora 2003:1459–1467.

  124. Gao P, Le Person S, Favre-Marinet M. Scale effects on hydrodynamics and heat transfer in two-dimensional mini and microchannels. Int J Therm Sci. 2002;41(11):1017–27.

    Article  CAS  Google Scholar 

  125. Judy J, Maynes D, Webb BW. Characterization of frictional pressure drop for liquid flows through microchannels. Int J Heat Mass Transf. 2002;45(17):3477–89.

    Article  CAS  Google Scholar 

  126. Lee PS, Ho JC, Xue H. Experimental study on laminar heat transfer in microchannel heat sink. In: ITherm 2002. Eighth intersociety conference on thermal and thermomechanical phenomena in electronic systems (Cat. No. 02CH37258), IEEE; 2002. pp. 379–386.

  127. Qu W, Mudawar I. Experimental and numerical study of pressure drop and heat transfer in a single-phase micro-channel heat sink. Int J Heat Mass Transf. 2002;45(12):2549–65.

    Article  CAS  Google Scholar 

  128. Celata GP, Cumo M, Guglielmi M, Zummo G. Experimental investigation of hydraulic and single-phase heat transfer in 0.130-mm capillary tube. Microscale Thermophys Eng. 2002;6(2):85–97.

    Article  CAS  Google Scholar 

  129. Li Z-X. Experimental study on flow characteristics of liquid in circular microtubes. Microscale Thermophys Eng. 2003;7(3):253–65.

    Article  CAS  Google Scholar 

  130. Bucci A, Celata GP, Cumo M, Serra E, Zummo G. Water single-phase fluid flow and heat transfer in capillary tubes. In: 1st international conference on microchannels and minichannels, 2003. pp. 319–326.

  131. Jung J-Y, Kwak H-Y. Fluid flow and heat transfer in microchannels with rectangular cross section. Heat Mass Transf. 2008;44(9):1041–9.

    Article  CAS  Google Scholar 

  132. Lee P-S, Garimella SV. Experimental investigation of heat transfer in microchannels. In: ASME Proceedings, 2008. pp. 391–397.

  133. Park H, Pak JJ, Son SY, Lim G, Song I. Fabrication of a microchannel integrated with inner sensors and the analysis of its laminar flow characteristics. Sens Actuators, A Phys. 2003;103(3):317–29.

    Article  CAS  Google Scholar 

  134. Tu X, Hrnjak P. Experimental investigation of single-phase flow pressure drop through rectangular microchannels. 2009. pp. 257–267.

  135. Wu HY, Cheng P. An experimental study of convective heat transfer in silicon microchannels with different surface conditions. Int J Heat Mass Transf. 2003;46(14):2547–56.

    Article  CAS  Google Scholar 

  136. Wu HY, Cheng P. Friction factors in smooth trapezoidal silicon microchannels with different aspect ratios. Int J Heat Mass Transf. 2003;46(14):2519–25.

    Article  CAS  Google Scholar 

  137. Baviere R, Ayela F, Le Person S, Favre-Marinet M. An experimental study of water flow in smooth and rough rectangular micro-channels. 2008, pp. 221–228. http://asmedigitalcollection.asme.org/. Accessed 7 Aug 2019.

  138. Hsieh S-S, Lin C-Y, Huang C-F, Tsai H-H. Liquid flow in a micro-channel. J. Micromech Microeng. 2004;14(4):436–45.

    Article  Google Scholar 

  139. Lelea D, Nishio S, Takano K. The experimental research on microtube heat transfer and fluid flow of distilled water. Int J Heat Mass Transf. 2004;47(12–13):2817–30.

    Article  CAS  Google Scholar 

  140. Hao PF, He F, Zhu KQ. Flow characteristics in a trapezoidal silicon microchannel. J Micromech Microeng. 2005;15(6):1362–8.

    Article  Google Scholar 

  141. Steinke ME, Kandlikar SG. Single-phase liquid friction factors in microchannels. Int J Therm Sci. 2006;45(11):1073–83.

    Article  CAS  Google Scholar 

  142. Shen S, Xu JL, Zhou JJ, Chen Y. Flow and heat transfer in microchannels with rough wall surface. Energy Convers Manag. 2006;47(11–12):1311–25.

    Article  CAS  Google Scholar 

  143. Hrnjak P, Tu X. Single phase pressure drop in microchannels. Int J Heat Fluid Flow. 2007;28(1):2–14.

    Article  CAS  Google Scholar 

  144. Gamrat G, Favre-Marinet M, Le Person S, Baviere R, Ayela F. An experimental study and modelling of roughness effects on laminar flow in microchannels. J Fluid Mech. 2008;594:399–423.

    Article  Google Scholar 

  145. Wibel W, Ehrhard P. Experiments on the laminar/turbulent transition of liquid flows in rectangular microchannels. Heat Transf Eng. 2009;30(1–2):70–7.

    Article  CAS  Google Scholar 

  146. Mirmanto KDBR, Lewis JS, Karayiannis TG. Pressure drop and heat transfer characteristics for single-phase developing flow of water in rectangular microchannels. J Phys Conf Ser. 2012;395(1):012085.

    Google Scholar 

  147. Houshmand F, Peles Y. Convective heat transfer to shear-driven liquid film flow in a microchannel. Int J Heat Mass Transf. 2013;64:42–52.

    Article  CAS  Google Scholar 

  148. do Nascimento FJ, Leão HLSL, Ribatski G. An experimental study on flow boiling heat transfer of R134a in a microchannel-based heat sink. Exp Therm Fluid Sci. 2013;45:117–27.

    Article  CAS  Google Scholar 

  149. Balasubramanian K, Lee PS, Teo CJ, Chou SK. Flow boiling heat transfer and pressure drop in stepped fin microchannels. Int J Heat Mass Transf. 2013;67:234–52.

    Article  Google Scholar 

  150. Goss G, Passos JC. Heat transfer during the condensation of R134a inside eight parallel microchannels. Int J Heat Mass Transf. 2013;59(1):9–19.

    Article  CAS  Google Scholar 

  151. Rahimi M, Karimi E, Asadi M, Valeh-e-Sheyda P. Heat transfer augmentation in a hybrid microchannel solar cell. Int Commun Heat Mass Transf. 2013;43:131–7.

    Article  Google Scholar 

  152. Roy P, Anand NK, Banerjee D. Liquid slip and heat transfer in rotating rectangular microchannels. Int J Heat Mass Transf. 2013;62(1):184–99.

    Article  Google Scholar 

  153. Zhuan R, Wang W. Boiling heat transfer characteristics in a microchannel array heat sink with low mass flow rate. Appl Therm Eng. 2013;51(1–2):65–74.

    Article  CAS  Google Scholar 

  154. El Mghari H, Asbik M, Louahlia-gualous H, Voicu I. Condensation heat transfer enhancement in a horizontal non-circular microchannel. Appl Therm Eng. 2014;64(1–2):358–70.

    Article  Google Scholar 

  155. Chen C, et al. A study on fluid flow and heat transfer in rectangular microchannels with various longitudinal vortex generators. Int J Heat Mass Transf. 2014;69:203–14.

    Article  Google Scholar 

  156. Emran M, Islam MA. Numerical investigation of flow dynamics and heat transfer characteristics in a microchannel heat sink. Procedia Eng. 2014;90:563–8.

    Article  Google Scholar 

  157. Huang CY, Wu CM, Chen YN, Liou TM. The experimental investigation of axial heat conduction effect on the heat transfer analysis in microchannel flow. Int J Heat Mass Transf. 2014;70:169–73.

    Article  CAS  Google Scholar 

  158. Law M, Lee PS, Balasubramanian K. Experimental investigation of flow boiling heat transfer in novel oblique-finned microchannels. Int J Heat Mass Transf. 2014;76:419–31.

    Article  CAS  Google Scholar 

  159. Leão HLSL, do Nascimento FJ, Ribatski G. Flow boiling heat transfer of R407c in a microchannels based heat spreader. Exp Therm Fluid Sci. 2014;59:140–51.

    Article  CAS  Google Scholar 

  160. Nandi TK, Chattopadhyay H. Numerical investigations of developing flow and heat transfer in raccoon type microchannels under inlet pulsation. Int Commun Heat Mass Transf. 2014;56:37–41.

    Article  Google Scholar 

  161. Tan DK, Liu Y. Combined effects of streaming potential and wall slip on flow and heat transfer in microchannels. Int Commun Heat Mass Transf. 2014;53:39–42.

    Article  CAS  Google Scholar 

  162. Abed WM, Whalley RD, Dennis DJC, Poole RJ. Numerical and experimental investigation of heat transfer and fluid flow characteristics in a micro-scale serpentine channel. Int J Heat Mass Transf. 2015;88:790–802.

    Article  CAS  Google Scholar 

  163. Chandra AK, Kishor K, Mishra PK, Alam MS. Numerical simulation of heat transfer enhancement in periodic converging-diverging microchannel. Proc Eng. 2015;127:95–101.

    Article  Google Scholar 

  164. Dai Z, Fletcher DF, Haynes BS. Impact of tortuous geometry on laminar flow heat transfer in microchannels. Int J Heat Mass Transf. 2015;83:382–98.

    Article  Google Scholar 

  165. Dehghan M, Daneshipour M, Valipour MS, Rafee R, Saedodin S. Enhancing heat transfer in microchannel heat sinks using converging flow passages. Energy Convers Manag. 2015;92:244–50.

    Article  Google Scholar 

  166. Duryodhan VS, Singh A, Singh SG, Agrawal A. Convective heat transfer in diverging and converging microchannels. Int J Heat Mass Transf. 2015;80:424–38.

    Article  Google Scholar 

  167. Ebrahimi A, Roohi E, Kheradmand S. Numerical study of liquid flow and heat transfer in rectangular microchannel with longitudinal vortex generators. Appl Therm Eng. 2015;78:576–83.

    Article  Google Scholar 

  168. Guo L, Xu H, Gong L. Influence of wall roughness models on fluid flow and heat transfer in microchannels. Appl Therm Eng. 2015;84:399–408.

    Article  Google Scholar 

  169. Lee YJ, Singh PK, Lee PS. Fluid flow and heat transfer investigations on enhanced microchannel heat sink using oblique fins with parametric study. Int J Heat Mass Transf. 2015;81:325–336.

    Article  Google Scholar 

  170. Prajapati YK, Pathak M, Kaleem Khan M. A comparative study of flow boiling heat transfer in three different configurations of microchannels. Int J Heat Mass Transf. 2015;85:711–22.

    Article  CAS  Google Scholar 

  171. Rao SR, Peles Y. Spatiotemporally resolved heat transfer measurements for flow boiling in microchannels. Int J Heat Mass Transf. 2015;89:482–93.

    Article  Google Scholar 

  172. Rostami J, Abbassi A, Saffar-Avval M. Optimization of conjugate heat transfer in wavy walls microchannels. Appl Therm Eng. 2015;82:318–28.

    Article  CAS  Google Scholar 

  173. Vivekanand SVB, Raju VRK. Simulation of evaporation heat transfer in a rectangular microchannel. Proc Eng. 2015;127:309–16.

    Article  Google Scholar 

  174. Xia GD, Jiang J, Wang J, Zhai YL, Ma DD. Effects of different geometric structures on fluid flow and heat transfer performance in microchannel heat sinks. Int J Heat Mass Transf. 2015;80:439–47.

    Article  Google Scholar 

  175. Zhang L-Y, Zhang Y-F, Chen J-Q, Bai S-L. Fluid flow and heat transfer characteristics of liquid cooling microchannels in LTCC multilayered packaging substrate. Int J Heat Mass Transf. 2015;84:339–45.

    Article  CAS  Google Scholar 

  176. Chai L, Wang L, Bai X. Thermohydraulic performance of microchannel heat sinks with triangular ribs on sidewalls—part 1: local fluid flow and heat transfer characteristics. Int J Heat Mass Transf. 2018;127:1124–37.

    Article  CAS  Google Scholar 

  177. Jagirdar M, Lee PS. Study of transient heat transfer and synchronized flow visualizations during sub-cooled flow boiling in a small aspect ratio microchannel. Int J Multiph Flow. 2016;83:254–66.

    Article  CAS  Google Scholar 

  178. Magnini M, Thome JR. A CFD study of the parameters influencing heat transfer in microchannel slug flow boiling. Int J Therm Sci. 2016;110:119–36.

    Article  Google Scholar 

  179. Ma DD, Xia GD, Li YF, Jia YT, Wang J. Effects of structural parameters on fluid flow and heat transfer characteristics in microchannel with offset zigzag grooves in sidewall. Int J Heat Mass Transf. 2016;101:427–35.

    Article  CAS  Google Scholar 

  180. Prajapati YK, Pathak M, Khan MK. Transient heat transfer characteristics of segmented finned microchannels. Exp Therm Fluid Sci. 2016;79:134–42.

    Article  CAS  Google Scholar 

  181. Sahar AM, Özdemir MR, Fayyadh EM, Wissink J, Mahmoud MM, Karayiannis TG. Single phase flow pressure drop and heat transfer in rectangular metallic microchannels. Appl Therm Eng. 2016;93:1324–36.

    Article  CAS  Google Scholar 

  182. Xu S, Li Y, Hu X, Yang L. Characteristics of heat transfer and fluid flow in a fractal multilayer silicon microchannel. Int Commun Heat Mass Transf. 2016;71:86–95.

    Article  CAS  Google Scholar 

  183. Yang F, Li W, Dai X, Li C. Flow boiling heat transfer of HFE-7000 in nanowire-coated microchannels. Appl Therm Eng. 2016;93:260–8.

    Article  CAS  Google Scholar 

  184. Dalkılıç AS, Mahian O, Yılmaz S, Sakamatapan K, Wongwises S. Experimental investigation of single-phase turbulent flow of R-134a in a multiport microchannel heat sink. Int Commun Heat Mass Transf. 2017;89:47–56.

    Article  CAS  Google Scholar 

  185. Feng Z, Luo X, Guo F, Li H, Zhang J. Numerical investigation on laminar flow and heat transfer in rectangular microchannel heat sink with wire coil inserts. Appl Therm Eng. 2017;116:597–609.

    Article  Google Scholar 

  186. Ghani IA, Kamaruzaman N, Sidik NAC. Heat transfer augmentation in a microchannel heat sink with sinusoidal cavities and rectangular ribs. Int J Heat Mass Transf. 2017;108:1969–81.

    Article  Google Scholar 

  187. Sahar AM, Wissink J, Mahmoud MM, Karayiannis TG, Ishak MSA. Effect of hydraulic diameter and aspect ratio on single phase flow and heat transfer in a rectangular microchannel. Appl Therm Eng. 2017;115:793–814.

    Article  Google Scholar 

  188. Wan Z, Lin Q, Wang X, Tang Y. Flow characteristics and heat transfer performance of half-corrugated microchannels. Appl Therm Eng. 2017;123:1140–51.

    Article  Google Scholar 

  189. Zhang Y, Wang J, Liu W, Liu Z. Heat transfer and pressure drop characteristics of R134a flow boiling in the parallel/tandem microchannel heat sinks. Energy Convers Manag. 2017;148:1082–95.

    Article  CAS  Google Scholar 

  190. Zhou F, Zhou W, Qiu Q, Yu W, Chu X. Investigation of fluid flow and heat transfer characteristics of parallel flow double-layer microchannel heat exchanger. Appl Therm Eng. 2018;137:616–31.

    Article  Google Scholar 

  191. Wang SL, Li XY, Wang XD, Lu G. Flow and heat transfer characteristics in double-layered microchannel heat sinks with porous fins. Int Commun Heat Mass Transf. 2018;93:41–7.

    Article  Google Scholar 

  192. Li P, Luo Y, Zhang D, Xie Y. Flow and heat transfer characteristics and optimization study on the water-cooled microchannel heat sinks with dimple and pin-fin. Int J Heat Mass Transf. 2018;119:152–62.

    Article  Google Scholar 

  193. Esmaili Q, Ranjbar AA, Porkhial S. Experimental analysis of heat transfer in ribbed microchannel. Int J Therm Sci. 2018;130(April):140–7.

    Article  Google Scholar 

  194. Choi SB, Barron RF, Warrington RO. Fluid flow and heat transfer in microtubes. Micromech Sens Actuators Syst. 1991;32:123–34.

    Google Scholar 

  195. Pong KC, Ho CM, Liu J, Tai YC. Non-linear pressure distribution in uniform microchannels. Am Soc Mech Eng Fluids Eng Div FED. 1994;197:51.

    Google Scholar 

  196. Arkilic EB, Schmidt MA, Breuer KS. Gaseous slip flow in long microchannels. J. Microelectromech Syst. 1997;6(2):167–78.

    Article  CAS  Google Scholar 

  197. Shih JC, Ho C-M, Liu J, Tai Y-C. Monatomic and polyatomic gas flow through uniform microchannels. Am Soc Mech Eng Dyn Syst Control Div DSC. 1996;59:197–203.

    Google Scholar 

  198. Stanley R, Ameel T, Barron R. Two-phase flow in microchannels. 1997.

  199. Wu S, Mai J, Zohar Y, Tai YC, Ho CM. A suspended microchannel with integrated temperature sensors for high-pressure flow studies. 2002. pp. 87–92. http://ieeexplore.ieee.org/. Accessed 7 Aug 2019.

  200. Araki T, Kim MS, Iwai H, Suzuki K. An experimental investigation of gaseous flow characteristics in microchannels. Microscale Thermophys Eng. 2002;6(2):117–30.

    Article  Google Scholar 

  201. Turner SE, Sun H, Faghri M, Gregory OJ. Compressible gas flow through smooth and rough microchannels. In: ASME-PUBLICATIONS-HTD, 2001, vol. 369, pp. 381–384.

  202. Asako Y, Nakayama K, Shinozuka T. Effect of compressibility on gaseous flows in a micro-tube. Int J Heat Mass Transf. 2005;48(23–24):4985–94.

    Article  CAS  Google Scholar 

  203. Kohl MJ, Abdel-Khalik SI, Jeter SM, Sadowski DL. An experimental investigation of microchannel flow with internal pressure measurements. Int J Heat Mass Transf. 2005;48(8):1518–33.

    Article  Google Scholar 

  204. Tang GH, Li Z, He YL, Tao WQ. Experimental study of compressibility, roughness and rarefaction influences on microchannel flow. Int J Heat Mass Transf. 2007;50(11–12):2282–95.

    Article  Google Scholar 

  205. Morini GL, Lorenzini M, Salvigni S, Spiga M. Analysis of laminar-to-turbulent transition for isothermal gas flows in microchannels. Microfluid Nanofluidics. 2009;7(2):181–90.

    Article  CAS  Google Scholar 

  206. Vijayalakshmi K, Anoop KB, Patel HE, Harikrishna PV, Sundararajan T, Das SK. Effects of compressibility and transition to turbulence on flow through microchannels. Int J Heat Mass Transf. 2009;52(9–10):2196–204.

    Article  Google Scholar 

  207. Chen L, Zhang XR. Heat transfer and various convection structures of near-critical CO2 flow in microchannels. Appl Therm Eng. 2014;72(1):135–42.

    Article  CAS  Google Scholar 

  208. Yuan X, Tao Z, Li H, Tian Y. Experimental investigation of surface roughness effects on flow behavior and heat transfer characteristics for circular microchannels. Chin J Aeronaut. 2016;29(6):1575–81.

    Article  Google Scholar 

  209. Kim B. An experimental study on fully developed laminar flow and heat transfer in rectangular microchannels. Int J Heat Fluid Flow. 2016;62:224–32.

    Article  Google Scholar 

  210. Ding L, Sun H, Sheng XL, Lee BD. Measurement of friction factor for R134a and R12 through microchannels. In: Proceedings of symposium on energy engineering in the 21st century. 2000, vol. 2, pp. 650–657.

  211. Cioncolini A, Thome JR, Lombardi C. Unified macro-to-microscale method to predict two-phase frictional pressure drops of annular flows. Int J Multiph Flow. 2009;35(12):1138–48.

    Article  CAS  Google Scholar 

  212. Jiang PX, Fan MH, Si GS, Ren ZP. Thermal-hydraulic performance of small scale micro-channel and porous-media heat-exchangers. Int J Heat Mass Transf. 2001;44(5):1039–51.

    Article  CAS  Google Scholar 

  213. Sharp KV, Adrian RJ. Transition from laminar to turbulent flow in liquid filled microtubes. Exp Fluids. 2004;36(5):741–7.

    Article  CAS  Google Scholar 

  214. Wang BX, Peng XF. Experimental investigation on liquid forced-convection heat transfer through microchannels. Int J Heat Mass Transf. 1994;37(SUPPL. 1):73–82.

    Article  CAS  Google Scholar 

  215. Schilder B, Man SYC, Kasagi N, Hardt S, Stephan P. Flow visualization and local measurement of forced convection heat transfer in a microtube. J Heat Transf. 2010;132(3):031702.

    Article  CAS  Google Scholar 

  216. Gnielinski V. New equations for heat and mass transfer in the turbulent flow in pipes and channels. Forsch Im Ingenieurwes. 1975;41(1):10.

    Article  Google Scholar 

  217. Garimella SV, Singhal V. Single-phase flow and heat transport and pumping considerations in microchannel heat sinks. Heat Transf Eng. 2004;25(1):15–25.

    Article  CAS  Google Scholar 

  218. Silvério V, Moreira ALN. Friction losses and heat transfer in laminar microchannel single-phase liquid flow. 2009. pp. 259–267. http://asmedigitalcollection.asme.org/. Accessed 12 Aug 2019.

  219. Kays WM. Convective heat and mass transfer. New York: Tata McGraw-Hill Education; 2012.

    Google Scholar 

  220. Incropera FP, Lavine AS, Bergman TL, DeWitt DP. Fundamentals of heat and mass transfer. 2007.

  221. Stephan K, Preußer P. Wärmeübergang und maximale Wärmestromdichte beim Behältersieden binärer und ternärer Flüssigkeitsgemische. Chemie Ing Tech. 1979;51(1):37.

    Article  CAS  Google Scholar 

  222. Shah RK, London AL. Laminar flow forced convection in ducts: a source book for compact heat exchanger analytical data. Cambridge: Academic Press; 2014.

    Google Scholar 

  223. Kakaç S, Shah RK, Aung W. Handbook of single-phase convective heat transfer. 1987.

  224. Yu D, Warrington R, Barron R, Ameel T. An experimental and theoretical investigation of fluid flow and heat transfer in microtubes. ASME/JSME Therm Eng Conf. 1995;1(52):523–30.

    CAS  Google Scholar 

  225. Grigull U, Tratz H. Thermischer einlauf in ausgebildeter laminarer rohrströmung. Int J Heat Mass Transf. 1965;8(5):669–78.

    Article  Google Scholar 

  226. Bejan A. Convection heat transfer. Wiley; 2013.

  227. Şen S, Darici S. Transient conjugate heat transfer in a circular microchannel involving rarefaction, viscous dissipation and axial conduction effects. Appl Therm Eng. 2017;111:855–62.

    Article  CAS  Google Scholar 

  228. Fayyadh EM, Mahmoud MM, Sefiane K, Karayiannis TG. Flow boiling heat transfer of R134a in multi microchannels. Int J Heat Mass Transf. 2017;110:422–36.

    Article  CAS  Google Scholar 

  229. Debray F, Franc JP, Maître T, Reynaud S. Mesure des coefficients de transfert thermique par convection forcée en mini-canaux. Mec Ind. 2001;2(5):443–54.

    Google Scholar 

  230. Che Z, Wong TN, Nguyen NT, Yang C. Three dimensional features of convective heat transfer in droplet-based microchannel heat sinks. Int J Heat Mass Transf. 2015;86:455–64.

    Article  Google Scholar 

  231. Fischer M, Juric D, Poulikakos D. Large convective heat transfer enhancement in microchannels with a train of coflowing immiscible or colloidal droplets. J Heat Transf. 2010;132(11):112402.

    Article  Google Scholar 

  232. Hasan AR, Kabir CS, Sarica C. Fluid flow and heat transfer in wellbores. 2002. p. 181. https://ci.nii.ac.jp/. Accessed 13 Aug 2019.

  233. Chu J-C, Teng J-T, Greif R. heat transfer for water flow in triangular silicon microchannels. J Therm Sci Technol. 2008;3(3):410–20.

    Article  CAS  Google Scholar 

  234. Ravigururajan TS. Impact of channel geometry on two-phase flow heat transfer characteristics of refrigerants in microchannel heat exchangers. J Heat Transfer. 1998;120(2):485.

    Article  CAS  Google Scholar 

  235. Acosta RE, Muller RH, Tobias CW. Transport processes in narrow (capillary) channels. AIChE J. 1985;31(3):473–82.

    Article  CAS  Google Scholar 

  236. Bucci A, Celata GP, Cumo M, Serra E, Zummo G. Water single-phase fluid flow and heat transfer in capillary tubes. 2009. pp. 319–326. http://asmedigitalcollection.asme.org/. Accessed 18 Aug 2019.

  237. Morini GL. Scaling effects for liquid flows in microchannels. Heat Transf Eng. 2006;27(731700955):64–73.

    Article  CAS  Google Scholar 

  238. Rosa P, Karayiannis TG, Collins MW. Single-phase heat transfer in microchannels: the importance of scaling effects. Appl Therm Eng. 2009;29(17–18):3447–68.

    Article  CAS  Google Scholar 

  239. Costa-Patry E, Olivier J, Michel B, Thome JR. Two-phase flow of refrigerants in 85 μm-wide multi-microchannels: part II—heat transfer with 35 local heaters. Int J Heat Fluid Flow. 2011;32(2):464–76.

    Article  CAS  Google Scholar 

  240. McAdams WH. Vaporization inside horizontal tubes-II, Benzene oil mixtures. Trans. ASME. 1942;64:193–200.

    Google Scholar 

  241. Owens WL. Two-phase pressure gradient. In: International development in heat transfer. 1961.

  242. Cicchitti A, Lombardi C, Silvestri M, Soldaini G, Zavattarelli R. Two-phase cooling experiments: pressure drop, heat transfer and burnout measurements. No. CISE-71. Milan: Centro Informazioni Studi Esperienze; 1959.

    Google Scholar 

  243. Dukler AE, Wicks M, Cleveland RG. Frictional pressure drop in two-phase flow: B. An approach through similarity analysis. AIChE J. 1964;10(1):44–51.

    Article  CAS  Google Scholar 

  244. Beattie DRH, Whalley PB. A simple two-phase frictional pressure drop calculation method. Int J Multiph Flow. 1982;8(1):83–7.

    Article  CAS  Google Scholar 

  245. Awad MM, Muzychka YS. Bounds on two-phase frictional pressure gradient in minichannels and microchannels. Heat Transf Eng. 2007;28(8–9):720–9.

    Article  CAS  Google Scholar 

  246. Venkatesan M, Das SK, Balakrishnan AR. Effect of diameter on two-phase pressure drop in narrow tubes. Exp Therm Fluid Sci. 2011;35(3):531–41.

    Article  Google Scholar 

  247. Choi C, Kim M. Flow pattern based correlations of two-phase pressure drop in rectangular microchannels. Int J Heat Fluid Flow. 2011;32(6):1199–207.

    Article  CAS  Google Scholar 

  248. Liu H, Vandu CO, Krishna R. Hydrodynamics of taylor flow in vertical capillaries: flow regimes, bubble rise velocity, liquid slug length, and pressure drop. Ind Eng Chem Res. 2005;44(14):4884–97.

    Article  CAS  Google Scholar 

  249. Mishima K, Hibiki T. Some characteristics of air–water two-phase flow in small diameter vertical tubes. Int J Multiph Flow. 1996;22(4):703–12.

    Article  CAS  Google Scholar 

  250. Zhang M, Webb RL. Correlation of two-phase friction for refrigerants in small-diameter tubes. Exp Therm Fluid Sci. 2001;25(3–4):131–9.

    Article  CAS  Google Scholar 

  251. Lee HJ, Lee SY. Pressure drop correlation for two-phase flow within horizontal rectangular channels with small heights. Int J Multiph Flow. 2001;27(5):783–96.

    Article  CAS  Google Scholar 

  252. Chen JC. Correlation for boiling heat transfer to saturated fluids in convective flow. Ind Eng Chem Process Des Dev. 1966;5(3):322–9.

    Article  CAS  Google Scholar 

  253. Qu W, Mudawar I. Measurement and prediction of pressure drop in two-phase micro-channel heat sinks. Int J Heat Mass Transf. 2003;46(15):2737–53.

    Article  Google Scholar 

  254. Yue J, Chen G, Yuan Q. Pressure drops of single and two-phase flows through T-type microchannel mixers. Chem Eng J. 2004;102(1):11–24.

    Article  CAS  Google Scholar 

  255. Coleman JW, Krause PE. Two phase pressure losses of R134a in microchannel tube headers with large free flow area ratios. Exp Therm Fluid Sci. 2004;28(2–3):123–30.

    Article  CAS  Google Scholar 

  256. Chung PM-Y, Kawaji M, Kawahara A, Shibata Y. Two-phase flow through square and circular microchannels—effects of channel geometry. J Fluids Eng. 2004;126(4):546.

    Article  CAS  Google Scholar 

  257. Lee J, Mudawar I. Two-phase flow in high-heat-flux micro-channel heat sink for refrigeration cooling applications: part I—pressure drop characteristics. Int J Heat Mass Transf. 2005;48(5):928–40.

    Article  CAS  Google Scholar 

  258. Pamitran AS, Choi KI, Oh JT, Oh HK. Two-phase pressure drop during CO2 vaporization in horizontal smooth minichannels. Int J Refrig. 2008;31(8):1375–83.

    Article  CAS  Google Scholar 

  259. Yue J, Luo L, Gonthier Y, Chen G, Yuan Q. An experimental investigation of gas–liquid two-phase flow in single microchannel contactors. Chem Eng Sci. 2008;63(16):4189–202.

    Article  CAS  Google Scholar 

  260. Lee P-S, Garimella SV. Experimental investigation of heat transfer in microchannels. In: ASME conference proceedings. 2008. pp. 391–397.

  261. Choi KI, Pamitran AS, Oh CY, Oh JT. Two-phase pressure drop of R-410A in horizontal smooth minichannels. Int J Refrig. 2008;31(1):119–29.

    Article  CAS  Google Scholar 

  262. Li X, Hibiki T. Frictional pressure drop correlation for two-phase flows in mini and micro multi-channels. Appl Therm Eng. 2017;116:316–28.

    Article  CAS  Google Scholar 

  263. Kawahara A, Chung PY, Kawaji M. Investigation of two-phase flow pattern, void fraction and pressure drop in a microchannel. Int J Multiph Flow. 2002;28(9):1411–35.

    Article  CAS  Google Scholar 

  264. Megahed A, Hassan I. Two-phase pressure drop and flow visualization of FC-72 in a silicon microchannel heat sink. Int J Heat Fluid Flow. 2009;30(6):1171–82.

    Article  CAS  Google Scholar 

  265. Lee HJ, Liu DY, Alyousef Y, Yao S. Generalized two-phase pressure drop and heat transfer correlations in evaporative micro/minichannels. J Heat Transf. 2010;132(4):041004.

    Article  CAS  Google Scholar 

  266. Garcia J, Porto MP, Revellin R, Bonjour J, Machado L. An experimental study on two-phase frictional pressure drop for R-407c in smooth horizontal tubes. Int J Refrig. 2016;73:163–74.

    Article  CAS  Google Scholar 

  267. Zhao TS, Bi QC. Pressure drop characteristics of gas–liquid two-phase flow in vertical miniature triangular channels. Int J Heat Mass Transf. 2001;44(13):2523–34.

    Article  CAS  Google Scholar 

  268. Lockhart RW, Martinelli RC. Proposed correlation of data for isothermal two-phase two component flow in pipes. Chem Eng Prog. 1949;45:39–48.

    Google Scholar 

  269. Friedel L. Improved friction pressure drop correlation for horizontal and vertical two-phase pipe flow. In: Proceeding of European Two-Phase Flow Group Meet, 1979.

  270. Fukano T, Kariyasaki A. Characteristics of gas–liquid two-phase flow in a capillary tube. Nucl Eng Des. 1993;141(1–2):59–68.

    Article  CAS  Google Scholar 

  271. Cavallini A, Del Col D, Doretti L, Matkovic M, Rossetto L, Zilio C. Two-phase frictional pressure gradient of R236ea, R134a and R410a inside multi-port mini-channels. Exp Therm Fluid Sci. 2005;29(7):861–70.

    Article  CAS  Google Scholar 

  272. Chisholm D. A theoretical basis for the Lockhart–Martinelli correlation for two-phase flow. Int J Heat Mass Transf. 1967;10(12):1767–78.

    Article  CAS  Google Scholar 

  273. Müller-Steinhagen H, Heck K. A simple friction pressure drop correlation for two-phase flow in pipes. Chem Eng Process. 1986;20(6):297–308.

    Article  Google Scholar 

  274. Ong CL, Thome JR. Macro-to-microchannel transition in two-phase flow: part 1—two-phase flow patterns and film thickness measurements. Exp Therm Fluid Sci. 2011;35(1):37–47.

    Article  CAS  Google Scholar 

  275. Rapolu P, Son SY. Characterization of wettability effects on pressure drop of two-phase flow in microchannel. Exp Fluids. 2011;51(4):1101–8.

    Article  CAS  Google Scholar 

  276. Kozulin IA, Kuznetsov VV. Statistical characteristics of two-phase gas–liquid flow in a vertical microchannel. J Appl Mech Tech Phys. 2011;52(6):956–64.

    Article  CAS  Google Scholar 

  277. Adams DC, Burr J, Hrnjak P, Newell T. Two phase pressure drop of CO2, ammonia, and R245fa in multiport aluminum microchannel tubes.

  278. Tran TN, Chyu MC, Wambsganss MW, France DM. Two-phase pressure drop of refrigerants during flow boiling in small channels: an experimental investigation and correlation development. Int J Multiph Flow. 2000;26(11):1739–54.

    Article  CAS  Google Scholar 

  279. Li W, Wu Z. A general correlation for evaporative heat transfer in micro/mini-channels. Int J Heat Mass Transf. 2010;53(9–10):1778–87.

    Article  CAS  Google Scholar 

  280. Forster HK, Zuber N. Dynamics of vapor bubbles and boiling heat transfer. AIChE J. 1955;1(4):531–5.

    Article  Google Scholar 

  281. Kandlikar SG. A general correlation for saturated two-phase flow boiling heat transfer inside horizontal and vertical tubes. J Heat Transf. 1990;112(1):219.

    Article  CAS  Google Scholar 

  282. Gungor KE, Winterton RHS. A general correlation for flow boiling in tubes and annuli. Int J Heat Mass Transf. 1986;29(3):351–8.

    Article  CAS  Google Scholar 

  283. Shah RK, London AL. Rectangular ducts. In: Laminar flow forced convection ducts. 1978. pp. 196–222.

  284. Lazarek GM, Black SH. Evaporative heat transfer, pressure drop and critical heat flux in a small vertical tube with R-113. Int J Heat Mass Transf. 1982;25(7):945–60.

    Article  CAS  Google Scholar 

  285. Cornwell K, Kew PA. Boiling in small parallel channels. In: Energy efficiency in process technology. Dordrecht: Springer Netherlands. 1993. p. 624–38.

  286. Moriyama K, Inoue A, Ohira H. The thermohydraulic characteristics of two-phase flow in extremely narrow channels (the frictional pressure drop and heat transfer boiling two-phase flow, analytical model). Heat Transf-Jpn Res. 1993;21(8):838–56.

    Google Scholar 

  287. Bowers MB, Mudawar I. High flux boiling in low flow rate, low pressure drop mini-channel and micro-channel heat sinks. Int J Heat Mass Transf. 1994;37(2):321–32.

    Article  CAS  Google Scholar 

  288. Wambsganss MW, France DM, Jendrzejczyk JA, Tran TN. Boiling heat transfer in a horizontal small-diameter tube. J Heat Transf. 2008;115(4):963.

    Article  Google Scholar 

  289. Mertz R, Wein A, Groll M. Experimental investigation of flow boiling heat transfer in narrow channels. Heat Technol. 1996;14(2):47–54.

    CAS  Google Scholar 

  290. Kew PA, Cornwell K. Correlations for the prediction of boiling heat transfer in small diameter channels. Appl Therm Eng. 1997;17:705–15.

    Article  CAS  Google Scholar 

  291. Mehendale SS, Jacobi AM. Evaporative heat transfer in mesoscale heat exchangers. 2000.

  292. Zhao Y, Chen G, Yuan Q. Liquid–liquid two-phase flow patterns in a rectangular microchannel. AIChE J. 2006;52(12):4052–60.

    Article  CAS  Google Scholar 

  293. Agostini B, et al. High heat flux flow boiling in silicon multi-microchannels: part III—saturated critical heat flux of R236fa and two-phase pressure drops. Int J Heat Mass Transf. 2008;51(21–22):5426–42.

    Article  CAS  Google Scholar 

  294. Ergu OB, Sara ON, Yapici S, Arzutug ME. Pressure drop and point mass transfer in a rectangular microchannel. Int Commun Heat Mass Transf. 2009;36(6):618–23.

    Article  CAS  Google Scholar 

  295. Alapati S, Kang S, Suh YK. Parallel computation of two-phase flow in a microchannel using the lattice Boltzmann method. J Mech Sci Technol. 2009;23(9):2492–501.

    Article  Google Scholar 

  296. Na YW, Chung JN. Two-phase annular flow and evaporative heat transfer in a microchannel. Int J Heat Fluid Flow. 2011;32(2):440–50.

    Article  Google Scholar 

  297. Autee AT, Srinivasa Rao S, Ravikumar P, Shrivastava RK. Two-phase pressure drop calculations in small diameter inclined tubes. Int J Eng Technol. 2012;1(3):168–81.

    Article  Google Scholar 

  298. Ide H, Kimura R, Hashiguchi H, Kawaji M. Effect of channel length on the gas–liquid two-phase flow phenomena in a microchannel. Heat Transf Eng. 2012;33(3):225–33.

    Article  CAS  Google Scholar 

  299. Szczukiewicz S, Magnini M, Thome JR. Proposed models, ongoing experiments, and latest numerical simulations of microchannel two-phase flow boiling. Int J Multiph Flow. 2014;59:84–101.

    Article  CAS  Google Scholar 

  300. Houshmand F, Peles Y. Heat transfer enhancement with liquid–gas flow in microchannels and the effect of thermal boundary layer. Int J Heat Mass Transf. 2014;70:725–33.

    Article  Google Scholar 

  301. Suwankamnerd P, Wongwises S. An experimental study of two-phase air-water flow and heat transfer characteristics of segmented flow in a microchannel. Exp Therm Fluid Sci. 2015;62:29–39.

    Article  Google Scholar 

  302. Chinnov EA, Ron’shin FV, Kabov OA. Two-phase flow patterns in short horizontal rectangular microchannels. Int J Multiph Flow. 2016;80:57–68.

    Article  CAS  Google Scholar 

  303. Vanderputten MA, Jacob TA, Sattar M, Ali N, Fronk BM. Two-phase flow regimes of condensing R-134a at low mass flux in rectangular microchannels. Int J Refrig. 2017;84:92–103.

    Article  CAS  Google Scholar 

  304. Dalkılıç AS, Özman C, Sakamatapan K, Wongwises S. Experimental investigation on the flow boiling of R134a in a multi-microchannel heat sink. Int Commun Heat Mass Transf. 2018;91:125–37.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ravinder Kumar or Mohammad Hossein Ahmadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, J.P., Sharma, A., Jilte, R.D. et al. A study on thermohydraulic characteristics of fluid flow through microchannels. J Therm Anal Calorim 140, 1–32 (2020). https://doi.org/10.1007/s10973-019-08741-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08741-4

Keywords

Navigation