Nanoencapsulation of oleic acid phase change material with Ag2O nanoparticles-based urea formaldehyde shell for building thermal energy storage


Nanoencapsulated phase change material (NEPCM) was prepared with oleic acid as phase change material by its encapsulation into Ag2O nanoparticles (NPs)-based urea formaldehyde (UF) resin. NEPCMs were synthesized by in situ polymerization with different surfactants, to obtain a better shell material in terms of energy release, leak arrest and enhanced thermal properties. The morphology and particle size of the prepared NEPCM were analyzed by digital microscope and scanning electron microscope. Fourier transform infrared spectroscopy was used to determine the chemical structure. X-ray diffraction studies were carried out to ensure the presence of Ag2O NPs containing UF resin as shell material and its cubic crystal system. Thermo-physical properties were evaluated using differential scanning calorimetry (DSC), thermogravimetric analysis and thermal diffusivity analysis. DSC results revealed that the cationic surfactant-assisted synthesis of shell material has a comparatively good encapsulation ratio of 45.52%, and to further enhance the encapsulating capacity, Ag2O NPs was introduced. Addition of Ag2O NPs into the shell material shows improved encapsulation ratio of 54.82% with latent heat of 71.7 J g−1 for melting at 5.21 °C and hence better surface morphology, good thermal stability, better thermal conductivity and more suitability toward thermal energy storage in buildings.

Graphic abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14


  1. 1.

    Zhang J, Guan X, Song X, Hou H, Yang Z, Zhu J. Preparation and properties of gypsum based energy storage materials with capric acid–palmitic acid/expanded perlite composite PCM. Energy Build. 2015;92:155–60.

    Google Scholar 

  2. 2.

    Parameshwaran R, Kalaiselvam S, Harikrishnan S, Elayaperumal A. Sustainable thermal energy storage technologies for buildings: a review. Renew Sustain Energy Rev. 2012;16:2394–433.

    CAS  Google Scholar 

  3. 3.

    Thiele AM, Sant G, Pilon L. Diurnal thermal analysis of microencapsulated PCM-concrete composite walls. Energy Convers Manag. 2015;93:215–27.

    Google Scholar 

  4. 4.

    Qiu X, Lu L, Zhang Z, Tang G, Song G. Preparation, thermal property, and thermal stability of microencapsulated n-octadecane with poly(stearyl methacrylate) as shell. J Therm Anal Calorim. 2014;118:1441–9.

    CAS  Google Scholar 

  5. 5.

    Wu J, Tremeac B, Terrier M, Charni M, Gagniere E, Couenne F, Hamroun B, Jallut C. Experimental investigation of the dynamic behavior of a large-scale refrigeration—PCM energy storage system. Validation of a complete model. Energy. 2016;116:32–42.

    Google Scholar 

  6. 6.

    Parameshwaran R, Kalaiselvam S. Energy conservative air conditioning system using silver nano-based PCM thermal storage for modern buildings. Energy Build. 2014;69:202–12.

    Google Scholar 

  7. 7.

    Lorwanishpaisarn N, Kasemsiri P, Posi P, Chindaprasirt P. Characterization of paraffin/ultrasonic-treated diatomite for use as phase change material in thermal energy storage of buildings. J Therm Anal Calorim. 2017;128:1293–303.

    CAS  Google Scholar 

  8. 8.

    Fang G, Chen Z, Li H. Synthesis and properties of microencapsulated paraffin composites with SiO2 shell as thermal energy storage materials. Chem Eng J. 2010;163:154–9.

    CAS  Google Scholar 

  9. 9.

    Kumar KRS, Dinesh R, Roseline AA, Kalaiselvam S. Performance analysis of heat pipe aided NEPCM heat sink for transient electronic cooling. Microelectron Reliab. 2017;73:1–13.

    Google Scholar 

  10. 10.

    Sarier N, Onder E. Organic phase change materials and their textile applications: an overview. Thermochim Acta. 2012;540:7–60.

    CAS  Google Scholar 

  11. 11.

    Singh S, Gaikwad KK, Lee M, Lee YS. Microwave-assisted micro-encapsulation of phase change material using zein for smart food packaging applications. J Therm Anal Calorim. 2018;131:2187–95.

    CAS  Google Scholar 

  12. 12.

    Ohkawara H, Kitagawa T, Fukushima N, Ito T, Sawa Y, Yoshimine T. A newly developed container for safe, easy, and cost-effective overnight transportation of tissues and organs by electrically keeping tissue or organ temperature at 3 to 6 °C. Transplant Proc. 2012;44:855–8.

    CAS  PubMed  Google Scholar 

  13. 13.

    Mohamed SA, Al-sulaiman FA, Ibrahim NI, Zahir H, Al-ahmed A, Saidur R, Yilbas BS, Sahin AZ. A review on current status and challenges of inorganic phase change materials for thermal energy storage systems. Renew Sustain Energy Rev. 2017;70:1072–89.

    CAS  Google Scholar 

  14. 14.

    Parameshwaran R, Jayavel R, Kalaiselvam S. Study on thermal properties of organic ester phase-change material embedded with silver nanoparticles. J Therm Anal Calorim. 2013;114:845–58.

    CAS  Google Scholar 

  15. 15.

    Hussain SI, Dinesh R, Roseline AA, Dhivya S, Kalaiselvam S. Enhanced thermal performance and study the influence of sub cooling on activated carbon dispersed eutectic PCM for cold storage applications. Energy Build. 2017;143:17–24.

    Google Scholar 

  16. 16.

    Harikrishnan S, Hussain SI, Devaraju A, Sivasamy P, Kalaiselvam S. Improved performance of a newly prepared nano-enhanced phase change material for solar energy storage. J Mech Sci Technol. 2017;31(10):4903–10.

    Google Scholar 

  17. 17.

    Fauzi H, Metselaar HSC, Mahlia TMI, Silakhori M, Ong HC. Thermal characteristic reliability of fatty acid binary mixtures as phase change materials (PCMs) for thermal energy storage applications. Appl Therm Eng. 2015;80:127–31.

    CAS  Google Scholar 

  18. 18.

    Harikrishnan S, Kalaiselvam S. Preparation and thermal characteristics of CuO–oleic acid nanofluids as a phase change material. Thermochim Acta. 2012;533:46–55.

    CAS  Google Scholar 

  19. 19.

    Chung O, Jeong SG, Yu S, Kim S. Thermal performance of organic PCMs/micronized silica composite for latent heat thermal energy storage. Energy Build. 2014;70:180–5.

    Google Scholar 

  20. 20.

    Konuklu Y, Ostry M, Paksoy HO, Charvat P. Review on using microencapsulated phase change materials (PCM) in building applications. Energy Build. 2015;106:134–55.

    Google Scholar 

  21. 21.

    Qiu X, Li W, Song G, Chu X, Tang G. Fabrication and characterization of microencapsulated n-octadecane with different crosslinked methylmethacrylate-based polymer shells. Sol Energy Mater Sol Cells. 2012;98:283–93.

    CAS  Google Scholar 

  22. 22.

    Inoue T, Hisatsugu Y, Yamamoto R, Suzuki M. Solid–liquid phase behavior of binary fatty acid mixtures 1. Oleic acid/stearic acid and oleic acid/behenic acid mixture. Chem Phys Lipids. 2004;127:143–52.

    CAS  PubMed  Google Scholar 

  23. 23.

    Inoue T, Hisatsugu Y, Yamamoto R, Suzuki M. Solid–liquid phase behavior of binary fatty acid mixtures 2. Mixtures of oleic acid with lauric acid, myristic acid, and palmitic acid. Chem Phys Lipids. 2004;127:161–73.

    CAS  PubMed  Google Scholar 

  24. 24.

    Inoue T, Hisatsugu Y, Suzuki M, Wang Z, Zheng L. Solid–liquid phase behavior of binary fatty acid mixtures 3. Mixtures of oleic acid with capric acid (decanoic acid) and caprylic acid (octanoic acid). Chem Phys Lipids. 2004;132:225–34.

    CAS  PubMed  Google Scholar 

  25. 25.

    Jamekhorshid A, Sadrameli SM, Farid M. A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium. Renew Sustain Energy Rev. 2014;31:531–42.

    CAS  Google Scholar 

  26. 26.

    Zeng J-L, Sun S-L, Zhou L, Chen Y-H, Shu L, Yu L-P, Zhu L, Song L-B, Cao Z, Sun L-X. Preparation, morphology and thermal properties of microencapsulated palmitic acid phase change material with polyaniline shells. J Therm Anal Calorim. 2017;129:1583–92.

    CAS  Google Scholar 

  27. 27.

    Al-Shannaq R, Farid M, Al-Muhtaseb S, Kurdi J. Emulsion stability and cross-linking of PMMA microcapsules containing phase change materials. Sol Energy Mater Sol Cells. 2015;132:311–8.

    CAS  Google Scholar 

  28. 28.

    Zhang H, Xing F, Cui H, Chen D, Ouyang X, Xu S, Wang J, Huang Y, Zuo J, Tang J. A novel phase-change cement composite for thermal energy storage: fabrication, thermal and mechanical properties. Appl Energy. 2016;170:130–9.

    CAS  Google Scholar 

  29. 29.

    Brown EN, Kessler MR, Sottos NR, White SR. In situ poly(urea-formaldehyde) microencapsulation of dicyclopentadiene. J Microencapsul. 2003;20(6):719–30.

    CAS  PubMed  Google Scholar 

  30. 30.

    Konuklu Y, Unal M, Paksoy HO. Microencapsulation of caprylic acid with different wall materials as phase change material for thermal energy storage. Sol Energy Mater Sol Cells. 2014;120:536–42.

    CAS  Google Scholar 

  31. 31.

    Konuklu Y, Paksoy HO, Unal M, Konuklu S. Microencapsulation of a fatty acid with Poly (melamine–urea–formaldehyde). Energy Convers Manag. 2014;80:382–90.

    CAS  Google Scholar 

  32. 32.

    Li G, Li W. Synthesis and characterization of microencapsulated n-octadecane with hybrid shells containing 3-(trimethoxysilyl) propyl methacrylate and methyl methacrylate. J Therm Anal Calorim. 2017;129:915–24.

    CAS  Google Scholar 

  33. 33.

    Konuklu Y, Paksoy HO. Polystyrene-based caprylic acid microencapsulation for thermal energy storage. Sol Energy Mater Sol Cells. 2017;159:235–42.

    CAS  Google Scholar 

  34. 34.

    Liang C, Lingling X, Hongbo S, Zhibin Z. Microencapsulation of butyl stearate as a phase change material by interfacial polycondensation in a polyurea system. Energy Convers Manag. 2009;50:723–9.

    Google Scholar 

  35. 35.

    Wang Y, Ji H, Shi H, Zhang T, Xia T. Fabrication and characterization of stearic acid/polyaniline composite with electrical conductivity as phase change materials for thermal energy storage. Energy Convers Manag. 2015;98:322–30.

    CAS  Google Scholar 

  36. 36.

    Aydin AA. In situ preparation and characterization of encapsulated high-chain fatty acid ester-based phase change material (PCM) in poly(urethane-urea) by using amino alcohol. Chem Eng J. 2013;231:477–83.

    CAS  Google Scholar 

  37. 37.

    Zhang T, Wang Y, Shi H, Yang W. Fabrication and performances of new kind microencapsulated phase change material based on stearic acid core and polycarbonate shell. Energy Convers Manag. 2012;64:1–7.

    CAS  Google Scholar 

  38. 38.

    Geng L, Wang S, Wang T, Luo R. Facile synthesis and thermal properties of nanoencapsulated n-dodecanol with SiO2 shell as shape-formed thermal energy storage material. Energy Fuels. 2016;30:6153–60.

    CAS  Google Scholar 

  39. 39.

    Sahan N, Paksoy H. Determining influences of SiO2 encapsulation on thermal energy storage properties of different phase change materials. Sol Energy Mater Sol Cells. 2017;159:1–7.

    CAS  Google Scholar 

  40. 40.

    Yu S, Wang X, Wu D. Self-assembly synthesis of microencapsulated n-eicosane phase-change materials with crystalline-phase-controllable calcium carbonate shell. Energy Fuels. 2014;28:3519–29.

    CAS  Google Scholar 

  41. 41.

    Cao L, Tang F, Fang G. Preparation and characteristics of microencapsulated palmitic acid with TiO2 shell as shape-stabilized thermal energy storage materials. Sol Energy Mater Sol Cells. 2014;123:183–8.

    CAS  Google Scholar 

  42. 42.

    Jiang X, Luo R, Peng F, Fang Y, Akiyama T, Wang S. Synthesis, characterization and thermal properties of paraffin nanocapsules modified with nano-Al2O3. Appl Energy. 2015;137:731–7.

    CAS  Google Scholar 

  43. 43.

    Zhang H, Wang X. Fabrication and performances of microencapsulated phase change materials based on n-octadecane core and resorcinol-modified melamine-formaldehyde shell. Colloids Surf A. 2009;332:129–38.

    CAS  Google Scholar 

  44. 44.

    Anjum M, Kumar R, Barakat MA. Visible light driven photocatalytic degradation of organic pollutants in wastewater and real sludge using ZnO–ZnS/Ag2O–Ag2S nanocomposite. J Taiwan Inst Chem Eng. 2012;77:227–35.

    Google Scholar 

  45. 45.

    Lashgari S, Arabi H, Mahdavian AR, Ambrogi V. Thermal and morphological studies on novel PCM microcapsules containing n-hexadecane as the core in a flexible shell. Appl Energy. 2017;190:612–22.

    CAS  Google Scholar 

  46. 46.

    Luo J, Zhao L, Yang Y, Song G, Liu Y, Chen L, Tang G. Emulsifying ability and cross-linking of silk fibroin microcapsules containing phase change materials. Sol Energy Mater Sol Cells. 2016;147:144–9.

    CAS  Google Scholar 

Download references


The authors gratefully acknowledge DST, New Delhi, under DST—CERI (DST File No. TMD/CERI/BEE/2016/038 (G)) for their financial support to carry out this research work. One of the authors, Mr. S. Imran Hussain, expresses his sincere thanks to Dr. K. V. Thiruvengadaravi for his help in improving the language of the manuscript.

Author information



Corresponding author

Correspondence to S. Kalaiselvam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hussain, S.I., Kalaiselvam, S. Nanoencapsulation of oleic acid phase change material with Ag2O nanoparticles-based urea formaldehyde shell for building thermal energy storage. J Therm Anal Calorim 140, 133–147 (2020).

Download citation


  • Encapsulation
  • Oleic acid
  • Thermal conductivity
  • Thermal stability
  • Thermal energy storage