Skip to main content
Log in

Experimental study of using nano-(GNP, MWCNT, and SWCNT)/water to investigate the performance of a PVT module

Energy and exergy analysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this paper, the effects of using carbon-based nanofillers/water nanofluids as a coolant fluid in a photovoltaic thermal system from both energy and exergy viewpoints are experimentally presented. The considered nanoparticles including MWCNTs, SWCNTs, and GNPs are dispersed in deionized water as the base fluid by 0.05 mass%. The experiments are carried out on certain days in August and September at Ferdowsi University of Mashhad, Mashhad, Iran. In order to investigate the consistency of the results, an uncertainty of the experiments is examined. The various mass flow rates are investigated in all cases, and as a result, an optimum mass flow rate of 50 kg h−1 based on first and second laws of thermodynamics is selected. According to the results, employing GNP/water, SWCNT/water, and MWCNT/water increase the total average overall energy efficiency by 19.3%, 15.24%, and 9.46% in comparison with pure water, respectively. Additionally, GNP/water, SWCNT/water, and MWCNT/water reduce the total average entropy generation of the module by 2.88%, 1.23%, and 0.82% compared to the pure water, respectively. It has been found that implementation of GNP/water nanofluid leads to more improvement in the module performance among other coolant fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

\(C_{\text{P}}\) :

Specific heat capacity (J kg−1 K−1)

\(\dot{E}\) :

Power (W)

\(\dot{E}x\) :

Exergy rate (W)

F :

Arbitrary function

FF:

Fill factor

\(\dot{G}\) :

Solar irradiation rate (W m−2)

\(I\) :

Electrical current (A)

\(\dot{m}\) :

Mass flow rate (kg s−1)

\(P\) :

Pressure (Pa)

PVT:

Photovoltaic thermal

\(T\) :

Temperature (K)

\(V\) :

Velocity (m/s)

α :

Absorptivity

η :

Efficiency (%)

σ :

Uncertainty

\(\tau\) :

Transmissivity

amb:

Ambient

des:

Destruction

elec:

Electrical

g:

Glass cover

in:

Inlet

max:

Maximum

oc:

Open circuit

out:

Outlet

pv:

PV

sc:

Short circuit

th:

Thermal

wf:

Working fluid

References

  1. Rashidi S, Karimi N, Mahian O, Abolfazli Esfahani J. A concise review on the role of nanoparticles upon the productivity of solar desalination systems. J Therm Anal Calorim. 2019;135(2):1145–59. https://doi.org/10.1007/s10973-018-7500-8.

    Article  CAS  Google Scholar 

  2. Rashidi S, Bovand M, Rahbar N, Esfahani JA. Steps optimization and productivity enhancement in a nanofluid cascade solar still. Renew Energy. 2018;118:536–45. https://doi.org/10.1016/j.renene.2017.11.048.

    Article  Google Scholar 

  3. Rashidi S, Kashefi MH, Hormozi F. Potential applications of inserts in solar thermal energy systems—a review to identify the gaps and frontier challenges. Sol Energy. 2018;171:929–52.

    Article  Google Scholar 

  4. Sardarabadi M, Hosseinzadeh M, Kazemian A, Passandideh-Fard M. Experimental investigation of the effects of using metal-oxides/water nanofluids on a photovoltaic thermal system (PVT) from energy and exergy viewpoints. Energy. 2017;138:682–95. https://doi.org/10.1016/j.energy.2017.07.046.

    Article  CAS  Google Scholar 

  5. Sardarabadi M, Passandideh-Fard M. Experimental and numerical study of metal-oxides/water nanofluids as coolant in photovoltaic thermal systems (PVT). Sol Energy Mater Sol Cells. 2016;157:533–42.

    Article  CAS  Google Scholar 

  6. Chandrasekar M, Suresh S, Senthilkumar T. Passive cooling of standalone flat PV module with cotton wick structures. Energy Convers Manag. 2013;71:43–50.

    Article  CAS  Google Scholar 

  7. Chow TT. A review on photovoltaic/thermal hybrid solar technology. Appl Energy. 2010;87(2):365–79.

    Article  CAS  Google Scholar 

  8. Kalogirou SA, Tripanagnostopoulos Y. Hybrid PV/T solar systems for domestic hot water and electricity production. Energy Convers Manag. 2006;47(18–19):3368–82.

    Article  CAS  Google Scholar 

  9. Chow TT, Pei G, Fong K, Lin Z, Chan A, Ji J. Energy and exergy analysis of photovoltaic–thermal collector with and without glass cover. Appl Energy. 2009;86(3):310–6.

    Article  Google Scholar 

  10. Yazdanifard F, Ebrahimnia-Bajestan E, Ameri M. Investigating the performance of a water-based photovoltaic/thermal (PV/T) collector in laminar and turbulent flow regime. Renew Energy. 2016;99:295–306.

    Article  CAS  Google Scholar 

  11. Farzanehnia A, Khatibi M, Sardarabadi M, Passandideh-Fard M. Experimental investigation of multiwall carbon nanotube/paraffin based heat sink for electronic device thermal management. Energy Convers Manag. 2019;179:314–25.

    Article  CAS  Google Scholar 

  12. Rashidi S, Eskandarian M, Mahian O, Poncet S. Combination of nanofluid and inserts for heat transfer enhancement. J Therm Anal Calorim. 2018;135(1):437–60.

    Article  Google Scholar 

  13. Rashidi S, Mahian O, Languri EM. Applications of nanofluids in condensing and evaporating systems. J Therm Anal Calorim. 2018;131(3):2027–39.

    Article  CAS  Google Scholar 

  14. Meibodi SS, Kianifar A, Mahian O, Wongwises S. Second law analysis of a nanofluid-based solar collector using experimental data. J Therm Anal Calorim. 2016;126(2):617–25.

    Article  CAS  Google Scholar 

  15. Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C et al. Recent advances in modeling and simulation of nanofluid flows-part I: fundamental and theory. Phys Rep 2018.

  16. Rejeb O, Sardarabadi M, Ménézo C, Passandideh-Fard M, Dhaou MH, Jemni A. Numerical and model validation of uncovered nanofluid sheet and tube type photovoltaic thermal solar system. Energy Convers Manag. 2016;110:367–77. https://doi.org/10.1016/j.enconman.2015.11.063.

    Article  CAS  Google Scholar 

  17. Maadi SR, Kolahan A, Passandideh-Fard M, Sardarabadi M, Moloudi R. Characterization of PVT systems equipped with nanofluids-based collector from entropy generation. Energy Convers Manag. 2017;150:515–31.

    Article  CAS  Google Scholar 

  18. Al-Musawi AIA, Taheri A, Farzanehnia A, Sardarabadi M, Passandideh-Fard M. Numerical study of the effects of nanofluids and phase-change materials in photovoltaic thermal (PVT) systems. J Therm Anal Calorim. 2019;137(2):623–36.

    Article  CAS  Google Scholar 

  19. Maadi S, Kolahan A, Passandideh Fard M, Sardarabadi M (eds.) Effects of nanofluids thermo-physical properties on the heat transfer and 1st law of thermodynamic in a serpentine PVT system. In: 17th conference on fluid dynamics, fd2017; 2017.

  20. Kolahan A, Maadi S, Passandideh Fard M, Sardarabadi M (eds.) Numerical and experimental investigations on the effect of adding nanoparticles on entropy generation in PVT systems. In: 17th conference on fluid dynamics, fd2017; 2017.

  21. Sardarabadi M, Passandideh-Fard M, Heris SZ. Experimental investigation of the effects of silica/water nanofluid on PV/T (photovoltaic thermal units). Energy. 2014;66:264–72.

    Article  CAS  Google Scholar 

  22. Al-Waeli AH, Chaichan MT, Kazem HA, Sopian K. Comparative study to use nano-(Al2O3, CuO, and SiC) with water to enhance photovoltaic thermal PV/T collectors. Energy Convers Manag. 2017;148:963–73.

    Article  CAS  Google Scholar 

  23. Michael JJ, Iniyan S. Performance analysis of a copper sheet laminated photovoltaic thermal collector using copper oxide–water nanofluid. Sol Energy. 2015;119:439–51.

    Article  CAS  Google Scholar 

  24. Ebaid MS, Ghrair AM, Al-Busoul M. Experimental investigation of cooling photovoltaic (PV) panels using (TiO2) nanofluid in water-polyethylene glycol mixture and (Al2O3) nanofluid in water-cetyltrimethylammonium bromide mixture. Energy Convers Manag. 2018;155:324–43.

    Article  CAS  Google Scholar 

  25. Al-Shamani AN, Sopian K, Mat S, Hasan HA, Abed AM, Ruslan MH. Experimental studies of rectangular tube absorber photovoltaic thermal collector with various types of nanofluids under the tropical climate conditions. Energy Convers Manag. 2016;124:528–42.

    Article  CAS  Google Scholar 

  26. Maré T, Halelfadl S, Sow O, Estellé P, Duret S, Bazantay F. Comparison of the thermal performances of two nanofluids at low temperature in a plate heat exchanger. Exp Thermal Fluid Sci. 2011;35(8):1535–43.

    Article  Google Scholar 

  27. Nasrin R, Rahim N, Fayaz H, Hasanuzzaman M. Water/MWCNT nanofluid based cooling system of PVT: experimental and numerical research. Renew Energy. 2018;121:286–300.

    Article  CAS  Google Scholar 

  28. Fayaz H, Nasrin R, Rahim NA, Hasanuzzaman M. Energy and exergy analysis of the PVT system: effect of nanofluid flow rate. Sol Energy. 2018;169:217–30. https://doi.org/10.1016/j.solener.2018.05.004.

    Article  CAS  Google Scholar 

  29. Nasrin R, Rahim NA, Fayaz H, Hasanuzzaman M. Water/MWCNT nanofluid based cooling system of PVT: experimental and numerical research. Renew Energy. 2018;121:286–300. https://doi.org/10.1016/j.renene.2018.01.014.

    Article  CAS  Google Scholar 

  30. Abdallah SR, Saidani-Scott H, Abdellatif OE. Performance analysis for hybrid PV/T system using low concentration MWCNT (water-based) nanofluid. Sol Energy. 2019;181:108–15.

    Article  CAS  Google Scholar 

  31. Sardarabadi M, Passandideh-Fard M, Heris SZ. Experimental investigation of the effects of silica/water nanofluid on PV/T (photovoltaic thermal units). Energy. 2014;66:264–72.

    Article  CAS  Google Scholar 

  32. Hosseinzadeh M, Sardarabadi M, Passandideh-Fard M. Energy and exergy analysis of nanofluid based photovoltaic thermal system integrated with phase change material. Energy. 2018;147:636–47.

    Article  CAS  Google Scholar 

  33. Park S, Pandey A, Tyagi V, Tyagi S. Energy and exergy analysis of typical renewable energy systems. Renew Sustain Energy Rev. 2014;30:105–23.

    Article  Google Scholar 

  34. Said Z, Saidur R, Rahim N, Alim M. Analyses of exergy efficiency and pumping power for a conventional flat plate solar collector using SWCNTs based nanofluid. Energy Build. 2014;78:1–9.

    Article  Google Scholar 

  35. Maadi SR, Khatibi M, Ebrahimnia-Bajestan E, Wood D. Coupled thermal-optical numerical modeling of PV/T module—combining CFD approach and two-band radiation DO model. Energy Convers Manag. 2019. https://doi.org/10.1016/j.enconman.2019.111781.

    Article  Google Scholar 

  36. Nahar A, Hasanuzzaman M, Rahim N. Numerical and experimental investigation on the performance of a photovoltaic thermal collector with parallel plate flow channel under different operating conditions in Malaysia. Sol Energy. 2017;144:517–28.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Kianifar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alwan Sywan Alshaheen, A., Kianifar, A. & Baradaran Rahimi, A. Experimental study of using nano-(GNP, MWCNT, and SWCNT)/water to investigate the performance of a PVT module. J Therm Anal Calorim 139, 3549–3561 (2020). https://doi.org/10.1007/s10973-019-08724-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08724-5

Keywords

Navigation