Skip to main content
Log in

The effect of Cu nanoparticles on the characteristics of vapor–liquid interface of argon at various saturated temperatures by molecular dynamic simulation

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, the effect of copper nanoparticles on the interface properties of liquid–vapor argon is investigated by molecular dynamics simulation. Stoddard Ford potential function has been utilized to estimate the interactions of argon–argon and argon–copper particles. Simulation is done in the nanoscale computational domain to phase change of vapor to liquid at different saturated temperatures. Density values and surface tension for different cutoff radii are obtained. It is demonstrated that in the \(r_{\text{c}} = 4\sigma\) calculated values are acceptable. Simulation results show that nanoparticles change the interface properties of liquid–vapor argon. With addition of nanoparticles, liquid density decreases and vapor density increases. Nanoparticles displace density distribution and cause fluctuations in the density profile. Also, surface tension increases with increase in nanoparticle concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhdanov ER, Fakhretdinov IA. Molecular dynamics simulation of the liquid–vapor interface of binary mixtures. J Mol Liq. 2005;120:51–3.

    Article  CAS  Google Scholar 

  2. Sinha S. Ph. D. Dissertation. University of California, Los Angeles; 2005.

  3. Shukal KP, Robert M. Computer simulation of interfaces between two dimensional fluid phases. J Fluid Phase Equilib. 1992;79:139–49.

    Article  Google Scholar 

  4. Wang ZJ, Chen M, Guo ZY, Yang C. Molecular dynamics study on the liquid–vapor interfacial profiles. Fluid Phase Equilib. 2001;183:321–9.

    Article  Google Scholar 

  5. Shen VK, Mountain RD, Errington JR. Comparative study of the effect of tail corrections on surface tension determined by molecular dynamics simulation. J Phys Chem B. 2007;111:6198–207.

    Article  CAS  Google Scholar 

  6. Chang TM, Dang LX. Liquid–vapor interface of methanol–water mixtures: a molecular dynamics study. J Phys Chem B. 2005;109:5759–65.

    Article  CAS  Google Scholar 

  7. Lishchuk Sergey V, Fischer Johann. Long range corrections in liquid–vapor interface simulations. J Chem Phys. 2018;149:091102.

    Article  Google Scholar 

  8. Protsenko P, Baidakov VG, Bryukhanov VM. Binary Lennard-Jones mixtures with highly asymmetric interactions of the components. 2. Effect of the particle size on phase equilibria and properties of liquid-gas interfaces. Fluid Phase Equilib. 2016;430:67–74.

    Article  CAS  Google Scholar 

  9. Arabpour A, Karimipour A, Toghraie D, Akbari OA. Investigation into the effects of slip boundary condition on nanofluid flow in a double-layer microchannel. J Therm Anal Calorim. 2018;131(3):2975–91.

    Article  CAS  Google Scholar 

  10. Arabpour A, Karimipour A, Toghraie D. The study of heat transfer and laminar flow of kerosene/multi-walled carbon nanotubes (MWCNTs) nanofluid in the microchannel heat sink with slip boundary condition. J Therm Anal Calorim. 2018;131(2):1553–66.

    Article  CAS  Google Scholar 

  11. Hosseinnezhad R, Akbari OA, Afrouzi HH, Biglarian M, Koveiti A, Toghraie D. Numerical study of turbulent nanofluid heat transfer in a tubular heat exchanger with twin twisted-tape inserts. J Therm Anal Calorim. 2018;132(1):741–59.

    Article  CAS  Google Scholar 

  12. Parsaiemehr M, Pourfattah F, Akbari OA, Toghraie D, Sheikhzadeh G. Turbulent flow and heat transfer of Water/Al2O3 nanofluid inside a rectangular ribbed channel. Physica E. 2018; 96:73–84.

    Article  CAS  Google Scholar 

  13. Toghraie D, Abdollah MMD, Pourfattah F, Akbari OA, Ruhani B. Numerical investigation of flow and heat transfer characteristics in smooth, sinusoidal and zigzag-shaped microchannel with and without nanofluid. J Therm Anal Calorim. 2018;131(2):1757–66.

    Article  CAS  Google Scholar 

  14. Gholami MR, Akbari OA, Marzban A, Toghraie D, Shabani GA, Zarringhalam M. The effect of rib shape on the behavior of laminar flow of oil/MWCNT nanofluid in a rectangular microchannel. J Therm Anal Calorim. 2017;134:1611–28.

    Article  Google Scholar 

  15. Akbari OA, Afrouzi HH, Marzban A, Toghraie D, Malekzade H, Arabpour A. Investigation of volume fraction of nanoparticles effect and aspect ratio of the twisted tape in the tube. J Therm Anal Calorim. 2017;129:1911–22.

    Article  CAS  Google Scholar 

  16. Pourdel H, Hassanzadeh Afrouzi H, Akbari OA, Miansari M, Toghraie D, Marzban A, Koveiti A. Numerical investigation of turbulent flow and heat transfer in flat tube. J Therm Anal Calorim. 2019;135(6):3471–83.

    Article  CAS  Google Scholar 

  17. Stoddard SD, Ford PJ. Numerical experiments on the stochastic behavior of a Lennard-Jones gas system. Phys Rev A. 1973;8:1504–12.

    Article  CAS  Google Scholar 

  18. Lee S, Saidur R, Sabri M, Min T. Effects of the particle size and temperature on the efficiency of nanofluids using molecular dynamic simulation. Numer Heat Transf Part A Appl. 2016;69(9):996–1013.

    Article  CAS  Google Scholar 

  19. Daw MS, Baskes MI. The embedded-atom method: a review of theory and applications. Phys Rev B Condens Matter Mater Phys. 1984;29:6443.

    Article  CAS  Google Scholar 

  20. Haile JM. Molecular dynamics simulation, elementary methods. Hoboken: Wiley Interscience; 1997.

    Google Scholar 

  21. Kirkwood JG, Buff FP. The statistical mechanical theory of surface tension. J Chem Phys. 1949;17:338–46.

    Article  CAS  Google Scholar 

  22. Trokhymchuk J, Alejandre A. Computer simulations of liquid-vapor interface in Lennard-Jones fluids: some questions and answers. J Chem Phys. 1999;111:8510–23.

    Article  CAS  Google Scholar 

  23. Allen MP, Tildesley DJ. Computer simulation of liquids. Oxford: Oxford University Press; 1989.

    Google Scholar 

  24. Computer aided thermodynamics table 2 software. New York: Wiley; 1996.

  25. Zarringhalam M, Ahmadi-Danesh-Ashtiani H, Toghraie D, Fazaeli R. Molecular dynamic simulation to study the effects of roughness elements with cone geometry on the boiling flow inside a microchannel. Int J Heat Mass Transf. 2019;141:1–8.

    Article  CAS  Google Scholar 

  26. Toghraie D, Mokhtari M, Afrand M. Molecular dynamic simulation of Copper and Platinum nanoparticles Poiseuille flow in a nanochannels. Phys E Low-Dimens Syst Nanostruct. 2016;84:152–61.

    Article  CAS  Google Scholar 

  27. Zhu DS, Wu SY, Wang N. Surface tension and viscosity of aluminum oxide nanofluids. In: Proceedings of 6th international symposium on multiphase flow, heat mass transfer and energy conversion, vol 460; 2009. p. 11–5.

  28. Moosavi M, Goharshadi EK, Youssefi A. Fabrication, characterization, and measurement of some physicochemical properties of ZnO nanofluids. Int J Heat Fluid Flow. 2010;31:599–605.

    Article  CAS  Google Scholar 

  29. Godson L, Raja B, Raj V, Lal DM. Measurement of viscosity and surface tension of silver deionized water nanofluids. In: Proceedings of 37th national & 4th international conference on fluid mechanics and fluid power, vol. 2010, December 16–18, IIT Madras, Chennai, India.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Abbassi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghahremanian, S., Abbassi, A., Mansoori, Z. et al. The effect of Cu nanoparticles on the characteristics of vapor–liquid interface of argon at various saturated temperatures by molecular dynamic simulation. J Therm Anal Calorim 139, 3725–3733 (2020). https://doi.org/10.1007/s10973-019-08711-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08711-w

Keywords

Navigation