Skip to main content
Log in

Water management and desalination in KSA view 2030

Case study of solar humidification and dehumidification system

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

With drinking water becoming scarce, it becomes imperative to find ways to better manage and produce potable water at low cost. In this paper, desalination methods have been discussed, the approaches to reduce their production cost and increasing performance have been investigated, the method of transferring water through Saudi Arabia, the possibility to use renewable energy and supporting KSA 2030 vision for desalination projects have been explored. One of the more precious projects related to KSA view 2030 is water desalination based on solar energy and decentralized the productivities; therefore, in the present study, we develop a small system to produce water for some families. The technology and materials used will have to be simple and easily available so that the system can be built anywhere based on solar energy at small cost. This model is therefore not only economically viable, but also small factories with solar collector enhance flow rates of potable water; these units could easily become profitable in non-oil producing countries and therefore will match with the new KSA vision. The present study proves that in case of low flow leads to more moisture at the outlet of the evaporator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Arbués F, García-Valiñas MA, Martínez-Espiñeira R. Estimation of residential water demand: a state of the art review. J Socioecon. 2003;32:81–102.

    Google Scholar 

  2. Khatri KB, Vairavamoorthy K. Water demand forecasting for the city of the future against the uncertainties and the global change pressures: case of Birmingham. In: EWRI/ASCE, conference, Kansas, USA. 2009.

  3. Worthington AC, Hoffman M. A state of the art review of residential water demand modeling. School of Accounting & Finance, University of Wollongong, Working Paper 6 (2006).

  4. Zhou SL, McMahon TA, Walton A, Lewis J. Forecasting daily urban water demand: a case study of Melbourne. J Hydrol. 2000;236:153–64.

    Article  Google Scholar 

  5. Dawoud MA. The role of desalination in augmentation of water supply in GCC countries. Desalination. 2005;186:187–98.

    Article  CAS  Google Scholar 

  6. Mezher T, Fath H, Abbas Z, Khaled A. Techno-economic assessment and environmental impacts of desalination technologies. Desalination. 2011;266:263–73.

    Article  CAS  Google Scholar 

  7. Griffin RC, Chang C. Pretest analysis of water demand in thirty communities. Water Resour Res. 1990;26:2251–5.

    Article  Google Scholar 

  8. Nauges C, Thomas A. Long-run study of residential water consumption. Environ Resour Econ. 2003;26:25–43.

    Article  Google Scholar 

  9. Tlili I, Alkanhal TA. Nanotechnology for water purification: electrospun nanofibrous membrane in water and wastewater treatment. J Water Reuse Desalination. 2019. https://doi.org/10.2166/wrd.2019.057.

    Article  Google Scholar 

  10. Sheikholeslami M, Shah Z, Shafee A, Khan I, Tlili I. Uniform magnetic force impact on water based nanofluid thermal behavior in a porous enclosure with ellipse shaped obstacle. Sci Rep. 2019. https://doi.org/10.1038/s41598-018-37964-y.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Abro KA, Memon AA, Abro SH, Khan I, Tlili I. Enhancement of heat transfer rate of solar energy via rotating Jeffrey nanofluids using Caputo–Fabrizio fractional operator: an application to solar energy. Energy Rep. 2019;5:41–9. https://doi.org/10.1016/j.egyr.2018.09.009.

    Article  Google Scholar 

  12. Tlili I, Timoumi Y, Ben Nasrallah S. Numerical simulation and losses analysis in a Stirling engine. Int J Heat Technol. 2006;24(1):97–105.

    Google Scholar 

  13. Tlili I, Timoumi Y, Ben Nasrallah S. Thermodynamic analysis of stirling heat engine with regenerative losses and internal irreversibilities. Int J Engine Res. 2007;9:45–56.

    Article  Google Scholar 

  14. Timoumi Y, Tlili I, Ben Nasrallah S. Performance optimization of stirling engines. Renew Energy. 2008;33:2134–44.

    Article  CAS  Google Scholar 

  15. Ahmadi MH, Ahmadi MA, Pourfayaz F, Hosseinzade H, Acıkkalp E, Tlili I, Feidt M. Designing a powered combined Otto and Stirling cycle power plant through multi-objective optimization approach. Renew Sustain Energy Rev. 2016;62:585–95.

    Article  Google Scholar 

  16. Tlili I. Renewable energy in Saudi Arabia: current status and future potentials. Environ Dev Sustain. 2015;17(4):859–86.

    Article  Google Scholar 

  17. Sa’ed A, Tlili I. Numerical investigation of working fluid effect on stirling engine performance. Int J Therm Environ Eng. 2015;10(1):31–6.

    Google Scholar 

  18. Tlili I. Finite time thermodynamic evaluation of endoreversible Stirling heat engine at maximum power conditions. Renew Sustain Energy Rev. 2012;16:2234–41.

    Article  Google Scholar 

  19. Tlili I. Thermodynamic study on optimal solar stirling engine cycle taking into account the irreversibilities effects. Energy Procedia. 2012;14:548–91.

    Article  Google Scholar 

  20. Tlili I. A numerical investigation of an alpha Stirling engine. Int J Heat Technol. 2012;30:23–36.

    Google Scholar 

  21. Tlili I, Musmar SA. Thermodynamic evaluation of a second order simulation for Yoke Ross Stirling engine. Energy Convers Manag. 2013;68:149–60.

    Article  Google Scholar 

  22. Tlili I, Timoumi Y, Nasrallah SB. Analysis and design consideration of mean temperature differential Stirling engine for solar application. Renew Energy. 2008;33:1911–21.

    Article  CAS  Google Scholar 

  23. Timoumi Y, Tlili I, Nasrallah SB. Design and performance optimization of GPU-3 Stirling engines. Energy. 2008;33:1100–14.

    Article  Google Scholar 

  24. Timoumi Y, Tlili I, Nasrallah SB. Reduction of energy losses in a Stirling engine. Heat Technol. 2007;25(1):84–93.

    Google Scholar 

  25. Al-Qawasmi A-R, Tlili I. Energy efficiency audit based on wireless sensor and actor networks: air-conditioning investigation. J Eng. 2018;. https://doi.org/10.1155/2018/3640821.

    Article  Google Scholar 

  26. Al-Qawasmi A-R, Tlili I. Energy efficiency and economic impact investigations for air-conditioners using wireless sensing and actuator networks. Energy Rep. 2018;4:478–85. ISSN 2352-4847. https://doi.org/10.1016/j.egyr.2018.08.001.

    Article  Google Scholar 

  27. Tlili I, Khan WA, Khan I. Multiple slips effects on MHD SA-Al2O3 and SA-Cu non-Newtonian nanofluids flow over a stretching cylinder in porous medium with radiation and chemical reaction. Results Phys. 2018;8:213–22. https://doi.org/10.1016/j.rinp.2017.12.013.

    Article  Google Scholar 

  28. Khan Z, Rasheed HU, Tlili I, Khan I, Abbas T. Runge-Kutta 4th-order method analysis for viscoelastic Oldroyd 8-constant fluid used as coating material for wire with temperature dependent viscosity. Sci Rep. 2018;8:14504. https://doi.org/10.1038/s41598-018-32068-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tlili I, Hamadneh NN, Khan WA. Thermodynamic analysis of MHD heat and mass transfer of nanofluids past a static wedge with navier slip and convective boundary conditions. Arab J Sci Eng. 2018. https://doi.org/10.1007/s13369-018-3471-0.

    Article  Google Scholar 

  30. Tlili Iskander, Hamadneh NN, Khan WA, Atawneh S. Thermodynamic analysis of MHD Couette–Poiseuille flow of water-based nanofluids in a rotating channel with radiation and Hall effects. J Therm Anal Calorim. 2018;132(3):1899–912. https://doi.org/10.1007/s10973-018-7066-5.

    Article  CAS  Google Scholar 

  31. Khan MN, Tlili I, Khan WA. Thermodynamic optimization of new combined gas/steam power cycles with HRSG and heat exchanger. Arab J Sci Eng. 2017;42(11):4547–58. https://doi.org/10.1007/s13369-017-2549-4.

    Article  CAS  Google Scholar 

  32. Khan MN, Khan WA, Tlili I. Forced convection of nanofluid flow across horizontal elliptical cylinder with constant heat flux boundary condition. J Nanofluids. 2019;8(2):386–93. https://doi.org/10.1166/jon.2019.1583.

    Article  Google Scholar 

  33. Tlili I, Khan WA, Ramadan K. MHD flow of nanofluid flow across horizontal circular cylinder: steady forced convection. J Nanofluids. 2019;8(1):179–86. https://doi.org/10.1166/jon.2019.1574.

    Article  Google Scholar 

  34. Afridi MI, Tlili I, Qasim M, Khan I. Nonlinear Rosseland thermal radiation and energy dissipation effects on entropy generation in CNTs suspended nanofluids flow over a thin needle. Bound Value Probl. 2018. https://doi.org/10.1186/s13661-018-1062-3.

    Article  Google Scholar 

  35. Almutairi MM, Osman M, Tlili I. Thermal behavior of auxetic honeycomb structure: an experimental and modeling investigation. ASME J Energy Resour Technol. 2018;140(12):122904–122904-8. https://doi.org/10.1115/1.4041091.

    Article  Google Scholar 

  36. Li Z, Khan I, Shafee A, Tlili I, Asifa T. Energy transfer of Jeffery–Hamel nanofluid flow between non-parallel walls using Maxwell–Garnetts (MG) and Brinkman models. Energy Rep. 2018;4:393–9. https://doi.org/10.1016/j.egyr.2018.05.003.

    Article  Google Scholar 

  37. Khan MN, Tlili I. Innovative thermodynamic parametric investigation of gas and steam bottoming cycles with heat exchanger and heat recovery steam generator: energy and exergy analysis. Energy Rep. 2018;4:497–506. https://doi.org/10.1016/j.egyr.2018.07.007.

    Article  Google Scholar 

  38. Ali F, Aamina, Khan I, Sheikh NA, Gohar M, Tlili I. Effects of different shaped nanoparticles on the performance of engine-oil and kerosene-oil: a generalized Brinkman-type fluid model with non-singular kernel. Sci Rep. 2018;8:15285. https://doi.org/10.1038/s41598-018-33547-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tlili I, Khan WA, Ramadan K. Entropy generation due to MHD stagnation point flow of a nanofluid on a stretching surface in the presence of radiation. J Nanofluids. 2018;7(5):879–90. https://doi.org/10.1166/jon.2018.1513.

    Article  Google Scholar 

  40. Asif M, Haq SU, Islam S, Khan I, Tlili I. Exact solution of non-Newtonian fluid motion between side walls. Results Phys. 2018;11:534–9. https://doi.org/10.1016/j.rinp.2018.09.023.

    Article  Google Scholar 

  41. Agaie BG, Khan I, Yacoob Z, Tlili I. A novel technique of reduce order modelling without static correction for transient flow of non-isothermal hydrogen-natural gas mixture. Results Phys. 2018;10:532–40. https://doi.org/10.1016/j.rinp.2018.01.052.

    Article  Google Scholar 

  42. Agaie BG, Khan I, Yacoob Z, Tlili I. A novel technique of reduce order modelling without static correction for transient flow of non-isothermal hydrogen–natural gas mixture. Results Phys. 2018;10:532–40. https://doi.org/10.1016/j.rinp.2018.01.052.

    Article  Google Scholar 

  43. Khalid A, Khan I, Khan A, Shafie S, Tlili I. Case study of MHD blood flow in a porous medium with CNTS and thermal analysis. Case Stud Therm Eng. 2018;12:374–80. https://doi.org/10.1016/j.csite.2018.04.004.

    Article  Google Scholar 

  44. Khan I, Abro KA, Mirbhar MN, Tlili I. Thermal analysis in Stokes’ second problem of nanofluid: applications in thermal engineering. Case Stud Therm Eng. 2018;12:271–5. https://doi.org/10.1016/j.csite.2018.04.005.

    Article  Google Scholar 

  45. Afridi MI, Qasim M, Khan I, Tlili I. Entropy generation in MHD mixed convection stagnation-point flow in the presence of joule and frictional heating. Case Stud Therm Eng. 2018;12:292–300. https://doi.org/10.1016/j.csite.2018.04.002.

    Article  Google Scholar 

  46. Khan MN, Tlili I. New advancement of high performance for a combined cycle power plant: thermodynamic analysis. Case Stud Therm Eng. 2018;12:166–75. https://doi.org/10.1016/j.csite.2018.04.001.

    Article  Google Scholar 

  47. Khan MN, Tlili I. Performance enhancement of a combined cycle using heat exchanger bypass control: a thermodynamic investigation. J Clean Prod. 2018;192(10):443–52. https://doi.org/10.1016/j.jclepro.2018.04.272.

    Article  Google Scholar 

  48. Khan ZA, Haq SU, Khan TS, Khan I, Tlili I. Unsteady MHD flow of a Brinkman type fluid between two side walls perpendicular to an infinite plate. Results Phys. 2018;9:1602–8. https://doi.org/10.1016/j.rinp.2018.04.034.

    Article  Google Scholar 

  49. Aman S, Khan I, Ismail Z, Salleh MZ, Tlili I. A new Caputo time fractional model for heat transfer enhancement of water based graphene nanofluid: an application to solar energy. Results Phys. 2018;9:1352–62. https://doi.org/10.1016/j.rinp.2018.04.007.

    Article  Google Scholar 

  50. Khan Z, Khan I, Ullah M, Tlili I. Effect of thermal radiation and chemical reaction on non-Newtonian fluid through a vertically stretching porous plate with uniform suction. Results Phys. 2018;9:1086–95. https://doi.org/10.1016/j.rinp.2018.03.041.

    Article  Google Scholar 

  51. Khan I, Tlili I, Imran MA, Miraj F. MHD fractional Jeffrey’s fluid flow in the presence of thermo diffusion, thermal radiation effects with first order chemical reaction and uniform heat flux. Results Phys. 2018;10:10–7. https://doi.org/10.1016/j.rinp.2018.04.008.

    Article  Google Scholar 

  52. Makinde OD, Iskander T, Mabood F, Khan WA, Tshehla MS. MHD Couette–Poiseuille flow of variable viscosity nanofluids in a rotating permeable channel with Hall effects. J Mol Liq. 2016;221:778–87. https://doi.org/10.1016/j.molliq.2016.06.037.

    Article  CAS  Google Scholar 

  53. Musmar SA, Al-Halhouli AT, Tlili I, Büttgenbach S. Performance analysis of a new water-based microcooling system. Exp Heat Transf. 2016;29(4):485–99. https://doi.org/10.1080/08916152.2015.1024353.

    Article  CAS  Google Scholar 

  54. Ramadan K, Tlili I. Shear work, viscous dissipation and axial conduction effects on microchannel heat transfer with a constant wall temperature. Proc Inst Mech Eng Part C J Mech Eng Sci. 2016;230(14):2496–507. https://doi.org/10.1177/0954406215598799.

    Article  Google Scholar 

  55. Ramadan K, Tlili I. A numerical study of the extended Graetz problem in a microchannel with constant wall heat flux: shear work effects on heat transfer. J Mech. 2015;31(6):733–43. https://doi.org/10.1017/jmech.2015.29.

    Article  CAS  Google Scholar 

  56. Musmar SA, Razavinia N, Mucciardi F, Tlili I. Performance analysis of a new waste heat recovery system. Int J Therm Environ Eng. 2015;10:31–6.

    Google Scholar 

  57. Khan WA, Rashad AM, Abdou MMM, Tlili I. Natural bioconvection flow of a nanofluid containing gyrotactic microorganisms about a truncated cone. Eur J Mech B Fluids. 2019;75:133–42. https://doi.org/10.1016/j.euromechflu.2019.01.002.

    Article  Google Scholar 

  58. Khan D, Khan A, Khan I, Ali F, Karim F, Tlili I. Effects of relative magnetic field, chemical reaction, heat generation and Newtonian heating on convection flow of Casson fluid over a moving vertical plate embedded in a porous medium. Sci Rep. 2019;400:9. https://doi.org/10.1038/s41598-018-36243-0.

    Article  CAS  Google Scholar 

  59. Nguyen TK, Sheikholeslami M, Jafaryar M, et al. Design of heat exchanger with combined turbulator. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08401-7.

    Article  Google Scholar 

  60. Hof A, Schmitt T. Urban and tourist land use patterns and water consumption: evidence from Mallorca, Balearic Islands. Land Use Policy. 2011;28:792–804.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iskander Tlili.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tlili, I., Alkanhal, T.A., Othman, M. et al. Water management and desalination in KSA view 2030. J Therm Anal Calorim 139, 3745–3756 (2020). https://doi.org/10.1007/s10973-019-08700-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08700-z

Keywords

Navigation