Skip to main content
Log in

Effect of Basil antioxidant additive on the performance, combustion and emission characteristics of used cooking oil biodiesel in CI engine

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

A Correction to this article was published on 23 December 2019

This article has been updated

Abstract

As the demand for fossil fuels has increased tremendously, cooking oil is found to be an effective source of biodiesel, but storage problems and NOX emissions are the major disadvantages. The current study discusses the effect of natural antioxidant additive Basil on the performance, emission and combustion characteristics of used cooking oil biodiesel in a diesel engine. The Basil powder prepared has been characterized through scanning electron microscopy, Fourier transform infrared spectroscopy, energy-dispersive spectrum and CHNS analysis. Thermal analysis of the prepared Basil particles has been carried out by employing thermal gravimetric analysis and differential scanning calorimetry. The addition of ethanol extracts of the antioxidant increased the oxidation stability measured in terms of the induction period of the biodiesel. The DPPH scavenging activity for the Basil extract increased with concentration, which represents the antioxidant characteristics. The composition of fatty acid and fuel properties of the prepared biodiesel have been determined by means of gas chromatography–mass spectrometry. The antioxidant was added to used cooking oil blend (UCOME20) at a concentration of 500, 1000 and 1500 ppm for which the stability has been determined using zeta potential. The results show that brake thermal efficiency and brake-specific fuel consumption reduced with the addition of antioxidants. NOx emission decreases, whereas hydrocarbon, carbon monoxide and smoke emissions increase. Also, maximum cylinder pressure and heat release rate decreased with the addition of Basil antioxidant to UCOME blend when compared to UCOME20.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Change history

  • 23 December 2019

    In the original publication of the article, Fig. 15 does not correspond to the variation of heat release rate with crank angle. Moreover, in the results and discussion section, the text included is in reference with Fig. 15.

Abbreviations

UCOME:

Used cooking oil methyl ester

UCOME20:

Used cooking oil methyl ester 20% and diesel 80%

DPPH 2:

2-Diphenyl-1-picrylhydrazyl

BHT:

Butylated hydroxytoluene

MEBP:

Methanol extract of B. purpurea leaves

DPPD:

N,N′-Diphenyl-p-phenylenediamine

TG:

Thermal gravimetric analysis

DSC:

Differential scanning calorimetry

SEM:

Scanning electron microscopy

FTIR:

Fourier transform infrared spectroscopy

GCMS:

Gas chromatography–mass spectrometry

EDS:

Energy-dispersive spectrum

CI:

Compression ignition

BTE:

Brake thermal efficiency

BSFC:

Brake-specific fuel consumption

CO:

Carbon monoxide

HC:

Hydrocarbon

NOx :

Nitrogen oxide

CN:

Cetane number

ID:

Ignition delay

HRR:

Heat release rate

ppm:

Parts per million

FAME:

Fatty acid methyl ester

FFA:

Free fatty acid

References

  1. Patel RL, Sankhavara CD. Biodiesel production from Karanja oil and its use in a diesel engine: a review. Renew Sustain Energy Rev. 2017;71:464–74. https://doi.org/10.1016/j.rser.2016.12.075.

    Article  CAS  Google Scholar 

  2. Phan AN, Phan TM. Biodiesel production from waste cooking oils. Fuel. 2008;87(17–18):3490–6. https://doi.org/10.1016/j.fuel.2008.07.008.

    Article  CAS  Google Scholar 

  3. Wang Y, Ou S, Liu P, Zhang Z. Preparation of biodiesel from waste cooking oil via two-step catalyzed process. Energy Convers Manag. 2007;48(1):184–8. https://doi.org/10.1016/j.enconman.2006.04.016.

    Article  CAS  Google Scholar 

  4. Shahidi F, Zhong Y. Lipid oxidation and improving the oxidative stability. Chem Soc Rev. 2010;39(11):4067–79. https://doi.org/10.1039/b922183m.

    Article  CAS  PubMed  Google Scholar 

  5. Yaakob Z, Narayanan BN, Padikkaparambil S. A review on the oxidation stability of biodiesel. Renew Sustain Energy Rev. 2014;35:136–53. https://doi.org/10.1016/j.rser.2014.03.055.

    Article  CAS  Google Scholar 

  6. Monyem A, Van Gerpen JH. The effect of biodiesel oxidation on engine performance and emissions. Biomass Bioenergy. 2001;20(4):317–25. https://doi.org/10.1016/S0961-9534(00)00095-7.

    Article  CAS  Google Scholar 

  7. CEN. Fat and oil derivatives—fatty acid methyl esters (FAME)—determination of oxidation stability. Accelerated oxidation test. 2003. https://www.saiglobal.com/pdftemp/previews/osh/is/en/2003/i.s.en14112-2003.pdf.

  8. Tang H, Wang A, Salley SO, Ng KS. The effect of natural and synthetic antioxidants on the oxidative stability of biodiesel. J Am Oil Chem Soc. 2008;85(4):373–82. https://doi.org/10.1007/s11746-008-1208-z.

    Article  CAS  Google Scholar 

  9. Tamilvanan A, Balamurugan K, Vijayakumar M. Effects of nano-copper additive on performance, combustion and emission characteristics of Calophyllum inophyllum biodiesel in CI engine. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7743-4.

    Article  Google Scholar 

  10. Murugapoopathi S, Vasudevan D. Energy and exergy analysis on variable compression ratio multi-fuel engine. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7761-2.

    Article  Google Scholar 

  11. Varatharajan K, Cheralathan M. Effect of aromatic amine antioxidants on NOx emissions from a soybean biodiesel powered DI diesel engine. Fuel Process Technol. 2013;106:526–32. https://doi.org/10.1016/j.fuproc.2012.09.023.

    Article  CAS  Google Scholar 

  12. Denisov ET, Afanas’ev IB. Oxidation and antioxidants in organic chemistry and biology. Boca Raton: CRC Press; 2005. https://doi.org/10.1201/9781420030853.

    Book  Google Scholar 

  13. Gatial A, Polovková J, Breza M. Quantum-chemical study of N, N-diphenyl-p-phenylenediamine (DPPD) dehydrogenation. Acta Chim Slov. 2008;1(1):72–84.

    Google Scholar 

  14. Varatharajan K, Cheralathan M, Velraj R. Mitigation of NOx emissions from a Jatropha biodiesel fuelled DI diesel engine using antioxidant additives. Fuel. 2011;90(8):2721–5. https://doi.org/10.1016/j.fuel.2011.03.047.

    Article  CAS  Google Scholar 

  15. Rashedul HK, Masjuki HH, Kalam MA, Teoh YH, How HG, Fattah IR. Effect of antioxidant on the oxidation stability and combustion–performance–emission characteristics of a diesel engine fueled with diesel–biodiesel blend. Energy Convers Manag. 2015;106:849–58. https://doi.org/10.1016/j.enconman.2015.10.024.

    Article  CAS  Google Scholar 

  16. Duarte AM, Aquino JS, Queiroz N, Dantas DL, Maciel GS, Souza AL. A comparative study of the thermal and oxidative stability of Moringa oil with olive and canola oils. J Therm Anal Calorim. 2018;134(3):1943–52. https://doi.org/10.1007/s10973-018-7651-7.

    Article  CAS  Google Scholar 

  17. Lima-Corrêa RD, dos Santos Andrade M, Freire JT, do Carmo Ferreira M. Thin-layer and vibrofluidized drying of Basil leaves (Ocimumbasilicum L.): analysis of drying homogeneity and influence of drying conditions on the composition of essential oil and leaf colour. J Appl Res Med Aromat Plants. 2017;7:54–63. https://doi.org/10.1016/j.jarmap.2017.05.001.

    Article  Google Scholar 

  18. Javanmardi J, Khalighi A, Kashi A, Bais HP, Vivanco JM. Chemical characterization of Basil (Ocimumbasilicum L.) found in local accessions and used in traditional medicines in Iran. J Agric Food Chem. 2002;50(21):5878–83. https://doi.org/10.1021/jf020487q.

    Article  CAS  PubMed  Google Scholar 

  19. Shaltout AA, Allam MA, Moharram MA. FTIR spectroscopic, thermal and XRD characterization of hydroxyapatite from new natural sources. Spectrochim Acta A. 2011;83(1):56–60. https://doi.org/10.1016/j.saa.2011.07.036.

    Article  CAS  Google Scholar 

  20. Klimankova E, Holadová K, Hajšlová J, Čajka T, Poustka J, Koudela M. Aroma profiles of five Basil (Ocimumbasilicum L.) cultivars grown under conventional and organic conditions. Food Chem. 2008;107(1):464–72. https://doi.org/10.1016/j.foodchem.2007.07.062.

    Article  CAS  Google Scholar 

  21. Devi A, Das VK, Deka D. Ginger extract as a nature based robust additive and its influence on the oxidation stability of biodiesel synthesized from non-edible oil. Fuel. 2017;187:306–14. https://doi.org/10.1016/j.fuel.2016.09.063.

    Article  CAS  Google Scholar 

  22. Santos BC, Pires AS, Yamamoto CH, Couri MR, Taranto AG, Alves MS, Araújo AL, de Sousa OV. Methyl chavicol and its synthetic analogue as possible antioxidant and antilipase agents based on the in vitro and in silico assays. Oxid Med Cell Longev. 2018. https://doi.org/10.1155/2018/2189348.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kim SH, Lee SY, Hong CY, Gwak KS, Park MJ, Smith D, Choi IG. Whitening and antioxidant activities of bornyl acetate and nezukol fractionated from Cryptomeria japonica essential oil. Int J Cosmet Sci. 2013;35(5):484–90. https://doi.org/10.1111/ics.12069.

    Article  CAS  PubMed  Google Scholar 

  24. Atadashi IM, Aroua MK, Aziz AA. Biodiesel separation and purification: a review. Renew Energy. 2011;36(2):437–43. https://doi.org/10.1016/j.renene.2010.07.019.

    Article  CAS  Google Scholar 

  25. Abed KA, El Morsi AK, Sayed MM, El Shaib AA, Gad MS. Effect of waste cooking-oil biodiesel on performance and exhaust emissions of a diesel engine. Egypt J Petrol. 2018. https://doi.org/10.1016/j.ejpe.2018.02.008.

    Article  Google Scholar 

  26. Jeyakumar N, Narayanasamy B, John K, Kathiresh, Markus Solomon J. Preparation, characterization and effect of calcium carbonate and titanium dioxide nano additives on fuel properties of tire oil diesel blend. Energy Source Part A. 2018;40(15):1798–806. https://doi.org/10.1080/15567036.2018.1486919.

    Article  CAS  Google Scholar 

  27. Balaji G, Cheralathan M. The effect of antioxidant additives with methyl ester of neem oil on the oxidation stability. Energy Source Part A. 2016;38(16):2454–61. https://doi.org/10.1080/15567036.2015.1089339.

    Article  CAS  Google Scholar 

  28. Narayanasamy B, Jeyakumar N, Saran A, Kumar V. Enhancing the oxidation stability of Mahua oil methyl ester with the addition of natural antioxidants. Energy Source Part A. 2018;40(21):2572–9. https://doi.org/10.1080/15567036.2018.1504146.

    Article  CAS  Google Scholar 

  29. Paramasivam B, Kasimani R, Rajamohan S. Characterization of pyrolysis bio-oil derived from intermediate pyrolysis of Aegle marmelos de-oiled cake: study on performance and emission characteristics of CI engine fueled with Aegle marmelos pyrolysis oil-blends. Environ Sci Pollut Res. 2018;25(33):33806–19. https://doi.org/10.1007/s11356-018-3319-x.

    Article  CAS  Google Scholar 

  30. Vinukumar K, Azhagurajan A, Vettivel SC, Vedaraman N. Rice husk as nano additive in diesel–biodiesel fuel blends used in diesel engine. J Therm Anal Calorim. 2018;131(2):1333–43. https://doi.org/10.1007/s10973-017-6692-7.

    Article  CAS  Google Scholar 

  31. Rashed MM, Kalam MA, Masjuki HH, Habibullah M, Imdadul HK, Shahin MM, Rahman MM. Improving oxidation stability and NOx reduction of biodiesel blends using aromatic and synthetic antioxidant in a light duty diesel engine. Ind Crops Prod. 2016;89:273–84. https://doi.org/10.1016/j.indcrop.2016.05.008.

    Article  CAS  Google Scholar 

  32. Qi DH, Chen H, Geng LM, Bian YZ. Experimental studies on the combustion characteristics and performance of a direct injection engine fueled with biodiesel/diesel blends. Energy Convers Manag. 2010;51(12):2985–92. https://doi.org/10.1016/j.enconman.2010.06.042.

    Article  CAS  Google Scholar 

  33. Adam IK, Aziz AR, Heikal MR, Yusup S. Performance and emission analysis of rubber seed methyl ester and antioxidant in a multicylinder diesel engine. Energy Fuels. 2017;31(4):4424–35. https://doi.org/10.1021/acs.energyfuels.6b02994.

    Article  CAS  Google Scholar 

  34. Karthickeyan V. Effect of nature based antioxidant from Zingiber officinale Rosc. on the oxidation stability, engine performance and emission characteristics with neem oil methyl ester. Heat Mass Transf. 2018;54(11):3409–20. https://doi.org/10.1007/s00231-018-2380-9.

    Article  CAS  Google Scholar 

  35. Fattah IR, Masjuki HH, Kalam MA, Mofijur M, Abedin MJ. Effect of antioxidant on the performance and emission characteristics of a diesel engine fueled with palm biodiesel blends. Energy Convers Manag. 2014;79:265–72. https://doi.org/10.1016/j.enconman.2013.12.024.

    Article  CAS  Google Scholar 

  36. Fattah IR, Masjuki HH, Liaquat AM, Ramli R, Kalam MA, Riazuddin VN. Impact of various biodiesel fuels obtained from edible and non-edible oils on engine exhaust gas and noise emissions. Renew Sustain Energy Rev. 2013;18:552–67. https://doi.org/10.1016/j.rser.2012.10.036.

    Article  CAS  Google Scholar 

  37. Palash SM, Kalam MA, Masjuki HH, Arbab MI, Masum BM, Sanjid A. Impacts of NOx reducing antioxidant additive on performance and emissions of a multi-cylinder diesel engine fueled with Jatropha biodiesel blends. Energ Convers Manag. 2014;77:577–85. https://doi.org/10.1016/j.enconman.2013.10.016.

    Article  CAS  Google Scholar 

  38. Prabu A. Performance and emission characteristics of a diesel engine fueled with antioxidants dispersed biodiesel and its blend with diesel. Environ Prog Sustain Energy. 2017;36(2):565–70. https://doi.org/10.1002/ep.12435.

    Article  CAS  Google Scholar 

  39. Hasan MM, Rahman MM. Performance and emission characteristics of biodiesel-diesel blend and environmental and economic impacts of biodiesel production: a review. Renew Sustain Energy Rev. 2017;74:938–48. https://doi.org/10.1016/j.rser.2017.03.045.

    Article  CAS  Google Scholar 

  40. Sathiyamoorthi R, Sankaranarayanan G. Effect of antioxidant additives on the performance and emission characteristics of a DICI engine using neat lemongrass oil–diesel blend. Fuel. 2016;174:89–96. https://doi.org/10.1016/j.fuel.2016.01.076.

    Article  CAS  Google Scholar 

  41. Mofijur M, Masjuki HH, Kalam MA, Atabani AE, Fattah IR, Mobarak HM. Comparative evaluation of performance and emission characteristics of Moringa oleifera and Palm oil-based biodiesel in a diesel engine. Ind Crops Prod. 2014;53:78–84. https://doi.org/10.1016/j.indcrop.2013.12.011.

    Article  CAS  Google Scholar 

  42. Devarajan Y, Munuswamy DB, Mahalingam A, Nagappan B. Performance, combustion, and emission analysis of neat palm oil biodiesel and higher alcohol blends in a diesel engine. Energy Fuels. 2017;31(12):13796–801. https://doi.org/10.1021/acs.energyfuels.7b02939.

    Article  CAS  Google Scholar 

  43. Jeyalakshmi P. Characterization of Simarouba glauca seed oil biodiesel. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7985-1.

    Article  Google Scholar 

  44. Prbakaran B, Viswanathan D. Experimental investigation of effects of addition of ethanol to bio-diesel on performance, combustion and emission characteristics in CI engine. Alex Eng J. 2018;57(1):383–9. https://doi.org/10.1016/j.aej.2016.09.009.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagarajan Jeyakumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeyakumar, N., Narayanasamy, B. Effect of Basil antioxidant additive on the performance, combustion and emission characteristics of used cooking oil biodiesel in CI engine. J Therm Anal Calorim 140, 457–473 (2020). https://doi.org/10.1007/s10973-019-08699-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08699-3

Keywords

Navigation