Skip to main content
Log in

Influence of viscous dissipation on MHD flow of micropolar fluid over a slendering stretching surface with modified heat flux model

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The current research article delivers a numerical study of an electrically conducting magnetohydrodynamic nonlinear convection flow of micropolar fluid over a slendering stretching surface. The flow is laminar and time independent. The influence of viscous dissipation, Joule heating, non-uniform heat source or sink, temperature-dependent thermal conductivity and thermal radiation is deemed. Heat-transfer characteristics are scrutinized with the aid of modified Fourier’s law. We presented simultaneous solutions for a flat surface and variable thickened surface. At first, appropriate similarity transformations are considered to convert the basic partial differential equations as ordinary ones and then solved by the successive application of numerical procedures such as shooting and fourth-order Runge–Kutta method. Graphs are delineated to observe the influence of diverse nondimensional parameters on the flow fields. Along with the skin friction coefficient, couple stress coefficient and local Nusselt number are also discussed and bestowed with the support of the table. Results stipulate that the distribution of temperature increases with thermal relaxation and radiation parameters, but a contradictory outcome is spotted for Prandtl number. Also, the microrotation velocity is suppressed with an enhancement in magnetic field parameter, but an opposite trend is observed for buoyancy force.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Cattaneo C. Sulla conduzione del calore, Atti Semin. Mat Fis Univ Modena Reggio Emilia. 2009;3:83-01.

    Google Scholar 

  2. Christov CI. On frame indifferent formulation of the Maxwell-Cattaneo model of finite speed heat conduction. Mech Res Commun. 2009;36:481–6.

    Article  Google Scholar 

  3. Hayat H, Farooq M, Alsaedi A, Solamy FA. Impact of Cattaneo–Christov heat flux in the flow over a stretching sheet with variable thickness. AIP Adv. 2015;5, 087159.

    Article  Google Scholar 

  4. Anantha Kumar K, Reddy JVR, Sugunamma V, Sandeep N. Magnetohydrodynamic Cattaneo–Christov flow past a cone and a wedge with variable heat source/sink. Alex Eng J. 2018;57:435–43.

    Article  Google Scholar 

  5. Sandeep N, Reddy MG. Heat transfer of nonlinear radiative magneto hydrodynamic Cu-water nanofluid flow over two different geometries. J Mol Liq. 2017;225:87–94.

    Article  CAS  Google Scholar 

  6. Bilal S, Malik MY, Awais M, Rehman K, Hussain A, Khan I. Numerical investigation on 2D viscoelastic fluid due to the exponentially stretching surface with magnetic effects: an application of non-Fourier flux theory. Neural Comput Appl. 2017. https://doi.org/10.1007/s00521-016-2832-4.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Naseem A, Shafiq A, Zhao L, Farook MU. Analytical investigation of third grade nanofluids flow over a riga plate using Cattaneo-Christov model. Res Phys. 2018;9:961–9.

    Google Scholar 

  8. Crane LJ. Flow past a stretching plate. (ZAMP) J Appl Math Phys. 1970;21:645–7.

    Article  Google Scholar 

  9. Anderson HI. MHD flow of a viscoelastic fluid past a stretching surface. Acta Mech. 1992;95:227–30.

    Article  Google Scholar 

  10. Hayat T, Khan MI, Farooq M, Alsaedi A, Waqas M, Yasmeen T. Impact of Cattaneo–Christov heat flux model in flow of variable thermal conductivity fluid over a variable thicked surface. Int J Heat Mass Transf. 2016;99:702–10.

    Article  Google Scholar 

  11. Anantha Kumar K, Reddy JVR, Sugunamma V, Sandeep N. Impact of cross diffusion on MHD viscoelastic fluid flow past a melting surface with exponential heat source. Multi Mode Mat Struct. 2018;14:999-016.

    Google Scholar 

  12. Chiam TC. Micropolar fluid flow over a stretching surface. ZAMM. 1982;62:565–8.

    Article  Google Scholar 

  13. Nazar R, Amin N, Filip D, Pop I. Stagnation point flow of a micropolar fluid towards a stretching sheet. Int J Non-Linear Mech. 2004;39:1227–35.

    Article  Google Scholar 

  14. Ishak A, Lok YY, Pop I. Stagnation point flow over a shrinking sheet in a micropolar, fluid. Chem Eng Commun. 2010;197:1417–27.

    Article  CAS  Google Scholar 

  15. Gupta D, Kumar L, Beg OA, Singh B. Finite element analysis of MHD flow of micropolar fluid over a shrinking sheet with a convective surface boundary condition. J Eng Thermophys. 2018;27:202–20.

    Article  CAS  Google Scholar 

  16. Maleki H, Safaei MR, Alrashed AA, Kasaeian A. Flow and heat transfer in non-Newtonian nanofluids over porous surfaces. J Thermal Anal Calorim. 2019;135:1655–66.

    Article  CAS  Google Scholar 

  17. Animasaun IL, Koriko OK, Adegbie KS, Babatunde HA, Ibraheem RO, Sandeep N, Mahanthesh B. Comparative analysis between 36 nm and 47 nm alumina–water nanofluid flows in the presence of Hall effect. J Therm Anal Calorim. 2019;135:873–86.

    Article  CAS  Google Scholar 

  18. Cortell R. Effects of viscous dissipation and work done by deformation on the MHD flow and heat transfer of a viscoelastic fluid over a stretching sheet. Phys Lett A. 2006;357:298-05.

    Article  CAS  Google Scholar 

  19. Chen CH. Combined effects of Joule heating and viscous dissipation on magnetohydrodynamic flow past a permeable stretching surface with free convection and radiative heat transfer. J Heat Transf. 2010;132, 064503.

    Article  Google Scholar 

  20. Anantha Kuamr K, Sugunamma V, Sandeep N, Reddy JVR. Numerical examination of MHD nonlinear radiative slip motion of non-Newtonian fluid across a stretching sheet in the presence of porous medium. Heat Transf Res. 2019. https://doi.org/10.1615/heattransres.2018026700.

    Article  Google Scholar 

  21. Novickij V, Grainys A, Svediene J, Markovskaja S, Novickij J. Joule heating influence on the vitality of fungi in pulsed magnetic fields during magnetic permeabilization. J Therm Anal Calorim. 2014;118:681–6.

    Article  CAS  Google Scholar 

  22. Sulochana C, Samrat SP, Sandeep N. Boundary layer analysis of an incessant moving needle in MHD radiative nanofluid with Joule heating. Int J Mech Sci. 2017;128–129:326–31.

    Article  Google Scholar 

  23. Hayat T, Asad S, Alsaedi A. Non-uniform heat source/sink and thermal radiation effects on the stretched flow of cylinder in a thermally stratified medium. J Appl Fluid Mech. 2016;10:915–24.

    Google Scholar 

  24. Mehmood K, Hussain S, Sagheer M. Mixed convection flow with non-uniform heat source/sink in a doubly stratified magnetonanofluid. AIP Adv. 2016;6, 065126.

    Article  CAS  Google Scholar 

  25. Anantha Kumar K, Sugunamma V, Sandeep N. Numerical exploration of MHD radiative micropolar liquid flow driven by stretching sheet with primary slip: a comparative study. J Non-Equilib Thermodyn. 2018;44:101–22.

    Google Scholar 

  26. Anantha Kumar K, Reddy JVR, Sugunamma V, Sandeep N. Simultaneous solutions for MHD flow of Williamson fluid over a curved sheet with non-uniform heat source/sink. Heat Transf Res. 2019;50:581–603.

    Article  Google Scholar 

  27. Bhattacharyya K, Mukhopadhyay S, Layek GC, Pop I. Effects of thermal radiation on micropolar fluid flow and heat transfer over a porous shrinking sheet. Int J Heat Mass Transf. 2012;55:2945–52.

    Article  CAS  Google Scholar 

  28. Ahmad S, Ashraf M, Syed KS. Effects of thermal radiation on MHD axisymmetric stagnation point flow and heat transfer of a micropolar fluid over a shrinking sheet. World Appl Sci J. 2011;15:835–48.

    CAS  Google Scholar 

  29. Gupta D, Kumar L, Beg OA, Singh B. Finite-element simulation of mixed convection flow of micropolar fluid over a shrinking sheet with thermal radiation. J Proc Mech Eng (proceedings). 2014;228:61–72.

    Article  CAS  Google Scholar 

  30. Kundu PK, Das K, Jana S. MHD micropolar fluid flow with thermal radiation and thermal diffusion in a rotating frame. Bull Malay Math Sci Soc. 2015;38:1185-05.

    Google Scholar 

  31. Haq RU, Nadeem S, Khan ZH, Akbar NS. Thermal radiation and slip effects on MHD stagnation point flow of nanofluid over a stretching sheet. Phys E Low-dimens Syst Nanostruct. 2015;65:17–23.

    Article  Google Scholar 

  32. Ramadevi B, Anantha Kumar K, Sugunamma V, Reddy JVR, Sandeep N. Magnetohydrodynamic mixed convective flow of micropolar fluid past a stretching surface using modified Fourier’s heat flux model. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08477-1.

    Article  Google Scholar 

  33. Dogonchi AS, Tayebi T, Chamkha AJ, Ganji DD. Natural convection analysis in a square enclosure with a wavy circular heater under magnetic field and nanoparticles. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08408-0.

    Article  Google Scholar 

  34. Dogonchi AS, Chamkha AJ, Ganji DD. A numerical investigation of magneto-hydrodynamic natural convection of Cu–water nanofluid in a wavy cavity using CVFEM. J Therm Anal Calorim. 2019;135(4):2599–611.

    Article  CAS  Google Scholar 

  35. Dogonchi AS, Sheremet MA, Ganji DD, Pop I. Free convection of copper–water nanofluid in a porous gap between hot rectangular cylinder and cold circular cylinder under the effect of inclined magnetic field. J Therm Anal Calorim. 2019;135(2):1171–84.

    Article  CAS  Google Scholar 

  36. Dogonchi AS, Ismael M, Chamkha AJ, Ganji DD. Numerical analysis of natural convection of Cu-water nanofluid filling triangular cavity with semi-circular bottom wall. J Therm Anal Calorim. 2018;135(6):3485–97.

    Article  CAS  Google Scholar 

  37. Anantha Kumar K, Sandeep N, Sugunamma V, Animasaun IL. Effect of irregular heat rise/fall in the radiative thin film flow of MHD hybrid ferrofluid. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08628-4.

    Article  Google Scholar 

  38. Kumar M, Reddy GJ, Dalir N. Transient entropy analysis of the magnetohydrodynamics flow of a Jeffrey fluid past an isothermal vertical flat plate. Pramana. 2018;91(5):60.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. Sugunamma or N. Sandeep.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anantha Kumar, K., Sugunamma, V. & Sandeep, N. Influence of viscous dissipation on MHD flow of micropolar fluid over a slendering stretching surface with modified heat flux model. J Therm Anal Calorim 139, 3661–3674 (2020). https://doi.org/10.1007/s10973-019-08694-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08694-8

Keywords

Navigation