Skip to main content
Log in

Thermodynamic assessment of the Ho–Ga system

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

By means of the CALPHAD (CALculation of PHAse Diagrams) technique, the holmium–gallium binary system was critically assessed. The thermodynamic parameters involved in the excess term of the Gibbs energy phases are optimized based on all the experimental data available in the literature. The Ho–Ga system contains five intermetallic compounds: \({\text{HoGa}}_{6} ,\,{\text{HoGa}}_{3} ,\,{\text{HoGa}}_{2} ,\,{\text{HoGa}}\,{\text{and}}\,{\text{Ho}}_{ 5} {\text{Ga}}_{3}\), which are all treated as stoichiometric phases. The term \({}_{ }^{\text{exe}} G\) of the Gibbs energy of the liquid phase is described, using the Redlich–Kister, Kaptay equations and the association solution model. The primary phases \(\alpha {\text{Ho}}\) (Hcp) and Ga (orthorhombic) are treated as pure stoichiometric phases. The phase diagram and model parameters were derived from a thermodynamic optimization. More experimental work on this system may be needed to confirm our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Moskalyk RR. Gallium: the backbone of the electronics industry. Min Eng. 2003;16:921–9.

    Article  CAS  Google Scholar 

  2. Kaufman L, Bernstein H. Computer calculations of phase diagrams. New York: Academic Press; 1970.

    Google Scholar 

  3. Yatsenko SP. Gallium—interaction with metals. Moscow: Nauka; 1974.

    Google Scholar 

  4. Yatsenko SP, Semyannikov AA, Semenov BG, Chuntonov KA. Phase diagrams of rare earth metals with gallium. J Less Common Met. 1979;64:185–99.

    Article  CAS  Google Scholar 

  5. Manory R, Pelleg J, Grill A. The neodymium-Gallium system. J Less Common Met. 1978;61:293–9.

    Article  CAS  Google Scholar 

  6. Kimmel G, Dayan D, Grill A, Pelleg J. The gallium-rich side of the Nd–Ga and Ce–Ga systems. J Less Common Met. 1980;75:133–40.

    Article  CAS  Google Scholar 

  7. Pelleg J, Zevin L. The Gd–Ga system: redetermination of the phase diagram on the gallium-rich side. J Less Common Met. 1981;77:197–203.

    Article  CAS  Google Scholar 

  8. Pelleg J, Kimmel G, Dayan D. R–Ga6 (R ≡ rare earth atom), a common intermetallic compound of the R–Ga systems. J Less Common Met. 1981;81:33–44.

    Article  CAS  Google Scholar 

  9. Pelleg J, Kimmel G. The Ho–Ga system in the 66.7–100 at.% Ga range. J Mater. Sci. Eng. 1982;52:P1–7.

    Article  CAS  Google Scholar 

  10. Yatsenko SP, Hladyschewsky EI, Tschuntonow KA, Yarmolyuk YP, Hryn YN. Kristallstruktur von Tm3Ga5, und analoger verbindungen. J Less Common Met. 1983;91:21–32.

    Article  CAS  Google Scholar 

  11. Yatsenko SP, Hladyschewsky RE, Sitschewitsch OM, Belsky VK, Semyannikov AA, Hryn’ YN, Yarmolyuk YP. Kristallstruktur von Gd3Ga2 und isotypen verbindungen. J Less Common Met. 1986;115(1):17–22.

    Article  CAS  Google Scholar 

  12. Massalski TB, Okamoto H, Subramanian PR, Kacprzak L. Binary alloy phase diagrams. 2nd ed. Materials Park: ASM; 1990.

    Google Scholar 

  13. Cirafici S, Franceschi E. Staking of close-packed AB3 layers in RGa3 compounds (R ≡ heavy rare earth). J Less Common Met. 1981;77:269–80.

    Article  CAS  Google Scholar 

  14. Zhao J, Corbett JD. R5Ga3 compounds of selected rare earth metals R: structures and properties. J Alloys Compd. 1994;210:1–7.

    Article  CAS  Google Scholar 

  15. Maggard PA, Corbett JD. Formation of gallium dimers in the intermetallic compounds R5Ga3 (R = Sc, Y, Ho, Er, Tm, Lu). Deformation of the Mn3Si3-type structure. Inorg Chem. 2001;40:1352–7.

    Article  CAS  Google Scholar 

  16. Colinet C, Pasturel A. Chapter 134 Thermodynamic properties of metallic systems. Handbook on the Physics and Chemistry of Rare Earths. 1994.

    Chapter  Google Scholar 

  17. Meschel SV, Kleppa OJ. Standard enthalpies of formation of some lanthanide gallides by high temperature direct synthesis calorimetry. J Alloys Compd. 2001;319:204–9.

    Article  CAS  Google Scholar 

  18. Dębski A, Dębski R, Gąsior W. New features of Entall database: comparison of experimental and model formation enthalpies. Arch Metall Mater. 2014;59:1337–43.

    Article  Google Scholar 

  19. Palenzona A, Franceschi E. The crystal structure of rare-earth gallides (Re5Ga3). J Less Common Met. 1968;14:47–53.

    Article  CAS  Google Scholar 

  20. Dwight AE, Downey JW, Conner RA. Equiatomic compounds of Y and the lanthanide elements with Ga. Acta Cryst. 1967;23:860–3.

    Article  Google Scholar 

  21. Rieger W, Parthé E. Kristallchemische Untersuchungen an Monogalliden von Seltenen Erdmetallen. Monatsh Chem. 1967;98:1935–6.

    Article  CAS  Google Scholar 

  22. Haszko SE. Rare earth gallium compounds having the aluminum-boride structure. Trans AIME. 1961;221:201.

    CAS  Google Scholar 

  23. Raghavan V. Fe–Ga–Ho (iron–gallium–holmium). J Phase Equilib. 2001;22:143–4.

    Article  CAS  Google Scholar 

  24. Dinsdale AT. SGTE data for pure elements. Calphad. 1991;15:317–425.

    Article  CAS  Google Scholar 

  25. Redlich O, Kister A. Algebraic representation of thermodynamic properties and the classification of solutions. Ind Eng Chem. 1948;40:345–8.

    Article  Google Scholar 

  26. Sundman B, Jansson B, Andersson JO. The thermo-calc databank system. CALPHAD. 1985;9:153–90.

    Article  CAS  Google Scholar 

  27. Chen SL, Daniel S, Zhang Z, Chang YA, Oates WA, Schmid-Fetzer RJ. On the calculation of multicomponent stable phase diagrams. Phase Equilib. 2001;22:373–87.

    Article  CAS  Google Scholar 

  28. Kaptay G. A new equation for the temperature dependence of the excess Gibbs energy of the solution phase. Calphad. 2004;28:115–24.

    Article  CAS  Google Scholar 

  29. Kaptay G. A Calphad-compatible method to calculate liquid/liquid interfacial energies in immiscible metallic system. Calphad. 2008;32:338–52.

    Article  CAS  Google Scholar 

  30. Kaptay G. A unified model for the cohesive enthalpy, critical temperature, surface tension and volume thermal expansion coefficient of liquid metals of bcc, fcc and hcp crystals. Mater Sci Eng A. 2008;495:19–26.

    Article  Google Scholar 

  31. Sommer F. Influence of associate formation in alloy-melts on the thermodynamic quantities. Calphad. 1978;2:319–24.

    Article  CAS  Google Scholar 

  32. Zhang F, Chen SL, Chang YA, Oates WA. An improved approach for obtaining thermodynamic descriptions of inter-metallic phases: application to the Cr–Ta system. Intermetallics. 2001;9:1079–83.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ait Boukideur.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boukideur, M.A., Selhaoui, N., Alaoui, F.Z.C. et al. Thermodynamic assessment of the Ho–Ga system. J Therm Anal Calorim 139, 3623–3633 (2020). https://doi.org/10.1007/s10973-019-08689-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08689-5

Keywords

Navigation