Skip to main content
Log in

The effect of partial substitution of Bi on colour properties and thermal stability of BixPr1−xFeO3 pigments

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The samples of BixPr1−xFeO3 (x = 0–0.3) were prepared by conventional ceramic method. The main aim of this work was to focus on determination of influence of partial Bi substitution for Pr on chromaticity and thermal stability. The formation temperature of the orthoferrites was chosen according to the results of DTA/TG analysis. X-ray powder diffraction analysis showed that solid solutions with orthorhombic structure were created. Results of the work proved that Bi substitution for Pr in PrFeO3 has significant impact on colour properties and thermal stability. Start of sintering of PrFeO3 was detected at 1086 °C and due to substitution of Bi3+ decreased to 956 °C (for x = 0.3). Thermal stability of the samples with x = 0.2 and x = 0.3 was limited at 1371 °C and 1360 °C, respectively. However, final colour was positively affected by the addition of Bi3+. Colour shades of powder shifted from yellowish brown to reddish brown with increasing amount of Bi ions. Very interesting colours of different deep yellowish and reddish brown shades were obtained after their application into organic binder. Mean particle size for all milled compounds prepared at 1000 °C was around 1 μm and for samples calcined at 1100 °C ranged between 1 and 1.6 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Swiller DR. Inorganic pigments. Kirk-Othmer encyclopedia of technology. 5th ed. New York: Wiley; 2006.

    Google Scholar 

  2. Ahmed MA, El-Dek SI. Extraordinary role of Ca2+ ions on the magnetization of LaFeO3 orthoferrite. Mater Sci Eng. 2006;B128:30–3.

    Google Scholar 

  3. Dohnalová Ž, Vontrončíková M, Šulcová P. Characterization of metal oxide-doped lutetium orthoferrite powders from the pigmentary point of view. J Therm Anal Calorim. 2013;113:1223–9.

    Google Scholar 

  4. Geller S. Crystal structure of gadolinium orthoferrite, GdFeO3. J Chem Phys. 1956;24:1236–9.

    CAS  Google Scholar 

  5. Cristóbal AA, Botta PM, Bercoff PG, Aglietti EF, Bertorello HR, Porto López JM. Mechanochemically assisted synthesis of yttrium–lanthanum orthoferrite: structural and magnetic characterization. J Alloy Compd. 2010;495:516–9.

    Google Scholar 

  6. Minh NQ. Ceramic fuel cell. J Am Ceram Soc. 1993;79:563–88.

    Google Scholar 

  7. Shimizu Y, Shimabukuri M, Arai H, Seiyama T. Enhancement of humidity sensitivity for peroskite-type oxides having semiconductivity. Chem Lett. 1985;14:917–20.

    Google Scholar 

  8. Obayashi H, Kudo T. Properties of oxygen deficient perovskite-type compounds and their use as alcohol sensors. Nippon Kagaku Kaishi. 1982;10:1568–72.

    Google Scholar 

  9. Takahashi Y, Taguchi H. Effect of carbon monoxide oxidation on electrical properties of (La0.8Sr0.2)FeO3. J Mater Sci Lett. 1984;3:251–3.

    Google Scholar 

  10. Traversa E, Matsushima S, Okada Y, Sadaoka Y, Sakai Y, Watanabe K. NO2 sensitive LaFeO3 thin films prepared by R.F. sputtering. Sens Actuators, B. 1995;25:661–4.

    CAS  Google Scholar 

  11. Arakawa T, Kurachi H, Shiokawa J. Physicochemical properties of rare earth perovskite oxide used as gas sensor material. J Mater Sci. 1985;4:1207–10.

    Google Scholar 

  12. Bouwmeester HJM, Kruidhof H, Burggraaf AJ. Importance of the surface exchange kinetics as rate limiting step in oxygen permeation through mixed-conducting oxides. Solid State Ionics. 1994;72:185–94.

    CAS  Google Scholar 

  13. Inoue T, Seki N, Egushi K, Arai H. Low-temperature operation of solid electrolyte oxygen sensors using perovskite-type oxide electrodes and cathodic reaction kinetics. J Electrochem Soc. 1990;137:2523–7.

    CAS  Google Scholar 

  14. Alcock CB, Doshi RC, Shen Y. Perovskite electrodes for sensors. Solid State Ionics. 1992;51:281–9.

    CAS  Google Scholar 

  15. McCarty JG, Wise H. Perovskite catalysts for methane combustion. Catal Today. 1990;8:231–48.

    CAS  Google Scholar 

  16. Tabata K, Misono M. Elimination of pollutant gases—oxidation of CO, reduction and decomposition of NO. Catal Today. 1990;8:249–61.

    CAS  Google Scholar 

  17. Sreeram KJ, Aby CHP, Nair BU, Ramasami T. Colored cool colorants based on rare earth metal ions. Sol Energy Mater Sol Cells. 2008;92:1462–7.

    CAS  Google Scholar 

  18. Dohnalová Ž, Šulcová P, Trojan M. Synthesis and characterization of LnFeO3 pigments. J Therm Anal Calorim. 2008;91:559–63.

    Google Scholar 

  19. Teague JR, Gerson R, James WJ. Dielectric hysteresis in single crystal BiFeO3. Solid State Commun. 1970;8:1073–5.

    CAS  Google Scholar 

  20. Kubel F, Schmid H. Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3. Acta Cryst B. 1990;46:698–702.

    Google Scholar 

  21. Lebeugle D, Colson D, Forget A, Viret M. Very large spontaneous electric polarization in BiFeO3 single crystals at room temperature and its evolution under cycling fields. Appl Phys Lett. 2007;91:022997.

    Google Scholar 

  22. Kaczmarek W, Pająk Z, Połomska M. Differential thermal analysis of phase transition in (Bi1−xLax)FeO3 solid solution. Solid State Commun. 1975;17:807–10.

    CAS  Google Scholar 

  23. Fischer W, Pająk Z, Połomska M. Differential thermal analysis of phase transition in (Bi1−xLax)FeO3 solid solution. Solid State Commun. 1975;17:807–10.

    Google Scholar 

  24. Smolenskii GA, Chupis IE. Ferroelectromagnets. Sov Phys Usp. 1982;25:475–93.

    Google Scholar 

  25. Arnold DC, Knight KS, Catalan G, Redfern SAT, Scott JF, Lightfoot P, Morrison FD. The β-to-γ transition in BiFeO3: a powder neutron diffraction study. Adv Funct Mater. 2010;20:2116–23.

    CAS  Google Scholar 

  26. Palai R, Palai R, Kartiyar RS, Schmid H, Tissot P, Clark SJ, Robertson J, Redfern SAT, Catalan G, Scott JF. β phase and γ-β metal insulator transition in multiferroic BiFeO3. Phys Rev B. 2008;77:014110.

    Google Scholar 

  27. Arnold DC, Knight KS, Morrison FD, Lightfoof P. Ferroelectric-paraelectric transition in BiFeO3: crystal structure of the orthorhombic β phase. Phys Rev Lett. 2009;102:027602.

    PubMed  Google Scholar 

  28. Valant M, Axelsson AK, Alford N. Peculiarities of a solid-state synthesis of multiferroic polycrystalline BiFeO3. Chem Mater. 2007;19:5431–6.

    CAS  Google Scholar 

  29. Le Bras G, Colson D, Forget A, Genand-Riondet N, Tourbot R, Bonville P. Magnetization and magnetoelectric effect in Bi1−xLaxFeO3 (0 ≤ x ≤ 0.15). Phys Rev B. 2009;80:134417.

    Google Scholar 

  30. Chen P, Günaydın-Şen Ö, Ren JW, Qin Z, Brinzari TV, McGill S, Cheong SW, Musfeldt JL. Spin cycloid quenching in Nd3+-substituted BiFeO3. Phys Rev B. 2012;83:014407.

    Google Scholar 

  31. Khomchenko VA, Paixão JA. Ti doping-induced magnetic and morphological transformations in Sr- and Ca-substituted BiFeO3. J Phys: Condens Matter. 2016;28:166004.

    CAS  Google Scholar 

  32. Yuan L, Han A, Ye M, Chen X, Yao L, Ding Ch. Synthesis and characterization of environmentally benign inorganic pigments with high NIR reflectance: lanthanum-doped BiFeO3. Dyes Pigment. 2018;148:137–46.

    CAS  Google Scholar 

  33. Pelovski Y, Petkova V, Dombalov I. Thermotribochemical treatment of low grade natural phosphates. J Therm Anal Calorim. 2007;88:207–12.

    CAS  Google Scholar 

  34. Joint Committee on Powder Diffraction Standards. International centre of diffraction data. Swarthmore: JCPDS; 1983.

    Google Scholar 

  35. Commission Internationale de l´Eclairage. Recommendations on uniform colour space, colour difference equations, psychometric color terms. Supplement No 2 of CIE publication no 15 (E1-1,31) 1971, Paris Bureau Central de la CIE; 1978.

  36. Šulcová P, Trojan M. Thermal analysis of pigments based on Bi2O3. J Therm Anal Calorim. 2006;84:737–40.

    Google Scholar 

  37. Šulcová P, Trojan M. Study of Ce1−xPrxO2 pigments. Thermochim Acta. 2003;395:251–5.

    Google Scholar 

  38. Luxová J, Šulcová P, Trojan M. Influence of firing temperature on the color properties of orthoferrite PrFeO3. Thermochim Acta. 2014;579:80–5.

    Google Scholar 

  39. Dohnalová Ž, Šulcová P, Bělina P, Vlček M, Gorodylova N. Brown pigments based on perovskite structure of BiFeO3−δ. J Therm Anal Calorim. 2018;133:421–8.

    Google Scholar 

  40. Zbořil R, Mashlan M, Krausova D, Pikal P. Cubic β-Fe2O3 as the product of the thermal decomposition of Fe2(SO4)3. Hyperfine Interact. 1999;120:497–501.

    Google Scholar 

  41. Danno T, Asaoka H, Nakanishi M, Fujii T, Ikeda Y, Kusano Y, Takada J. Formation mechanism of nano-crystalline β-Fe2O3 particles with bixbyite structure and their magnetic properties. J Phys: Conf Ser. 2010;200:082003.

    Google Scholar 

  42. Polat Y, Mehmet A, Dağdemir Y. Magnetic properties of Co-doped Bismuth oxide (δ-Bi2O3) at low temperature. J Low Temp Phys. 2018;193:74–84.

    CAS  Google Scholar 

  43. Abdellahi M, Abhari AS, Bahmanpour M. Preparation a characterization of orthoferrite PrFeO3 nanoceramic. Ceram Int. 2016;42:4637–41.

    CAS  Google Scholar 

  44. Maître A, François M, Gachon JC. Experimental study of the Bi2O3-Fe2O3 pseudo-binary system. J Phase Equilib Diffus. 2004;25:59–67.

    Google Scholar 

  45. Selbach SM, Einarsrud MA, Grande T. On the thermodynamic stability of BiFeO3. Chem Mater. 2009;21:169–73.

    CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by Grant Agency of Czech Republic, Project No. 16-06697S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jana Luxová.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luxová, J., Šulcová, P. The effect of partial substitution of Bi on colour properties and thermal stability of BixPr1−xFeO3 pigments. J Therm Anal Calorim 138, 4303–4312 (2019). https://doi.org/10.1007/s10973-019-08686-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08686-8

Keywords

Navigation