Skip to main content
Log in

Ponceau 4R azoic red dye

Thermal behavior, optical anisotropy and terahertz spectroscopy study

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The synthetic red azo dye Ponceau 4R is an additive with widely utilization in food processing technology. Thermal behavior of the trisodium (8Z)-7-oxo-8-[(4-sulfonatonaphthalen-1-yl)hydrazinylidene] naphthalene-1,3-disulfonate, appointed Ponceau 4R or E124, was studied. Thermal analysis measurements of Ponceau 4R revealed thermal stability until 300 °C. Ponceau 4R is an anisotropic crystalline dye that has the property of birefringence. The THz spectroscopy allowed the determination of the characteristic absorption frequencies of this colorant and its identification in any food. In the THz spectrum of Ponceau 4R, it can be seen that the strongest absorption is produced for the radiation with frequency of 1.41, 1.74 and 3.81 THz. THz spectroscopy of Ponceau 4R identified spectral “signatures” of azo food dye studied, which were obtained by the processing of the numerical data of THz spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. König J. Food colour additives of synthetic origin. Colour additives for foods and beverages. Cambridge: Woodhead Publishing; 2015.

    Google Scholar 

  2. EFSA Panel on Food Additives and Nutrient Sources added to Food. Scientific Opinion on the reevaluation of Ponceau 4R (E 124) as a food additive on request from the European Commission. EFSA J. 2009;7(11):1328.

    Google Scholar 

  3. EFSA (European Food Safety Authority). Refined exposure assessment for Ponceau 4R (E 124). EFSA J. 2015;13(4):4073.

    Google Scholar 

  4. Pagáčiková D, Lehotay J. Determination of synthetic colors in meat products using high-performance liquid chromatography with photodiode array detector. J Liq Chromatogr Relat Technol. 2015;38:579–83.

    Google Scholar 

  5. Turak F, Ozgur MU. Simultaneous determination of Allura Red and Ponceau 4R in drinks with the use of four derivative spectrophotometric methods and comparison with high-performance liquid chromatography. J AOAC Int. 2013;96(6):1377.

    CAS  PubMed  Google Scholar 

  6. Rotaru A, Bratulescu G, Rotaru P. Thermal analysis of azoic dyes: part I. Non-isothermal decomposition kinetics of [4-(4-chlorobenzyloxy)-3-methylphenyl](p-tolyl)diazene in dynamic air atmosphere. Thermochim Acta. 2009;489:63–9.

    CAS  Google Scholar 

  7. Moanta A, Ionescu C, Rotaru P, Socaciu M, Harabor A. Structural characterization, thermal investigation, and liquid crystalline behavior of 4-[(4-chlorobenzyl) oxy]-3, 4′-dichloroazobenzene. J Therm Anal Calorim. 2010;102:1079–86.

    CAS  Google Scholar 

  8. Rotaru A, Constantinescu C, Rotaru P, Moanţă A, Dumitru M, Socaciu M, Dinescu M, Segal E. Thermal analysis and thin films deposition by matrix assisted pulsed laser evaporation of a 4CN type azomonoether. J Therm Anal Calorim. 2008;92:279–84.

    CAS  Google Scholar 

  9. Gur M, Kocaokutgen H, Tas M. Synthesis, spectral, and thermal characterisations of some azo-ester derivatives containing a 4-acryloyloxy group. Dyes Pigments. 2007;72(1):101–8.

    Google Scholar 

  10. Vlase T, Vlase G, Modra D, Doca N. Thermal behaviour of some industrial and food dyes. J Therm Anal Calorim. 2007;88:389–93.

    CAS  Google Scholar 

  11. Vlase L, Muntean D, Cobzac SC, Filip L. Development and validation of an HPLC-UV method for determination of synthetic food colorants. Rev Roum Chim. 2014;59(9):719–25.

    Google Scholar 

  12. Mazdeh FZ, Khorrami AR, Khatoonabadi ZM, Aftabdari FE, Ardekani MRS, Moghaddam G, Hajimahmoodi M. Determination of 8 synthetic food dyes by solid phase extraction and reversed-phase high performance liquid chromatography. Trop J Pharm Res. 2016;15(1):173–81.

    CAS  Google Scholar 

  13. Constantinescu C, Morintale E, Emandi A, Dinescu M, Rotaru P. Thermal and microstructural analysis of Cu(II) 2,20-dihydroxy azobenzene and thin films deposition by MAPLE technique. J Therm Anal Calorim. 2011;104:707–16.

    CAS  Google Scholar 

  14. Moanta A, Ionescu C, Dragoi M, Tutunaru B, Rotaru P. A new azo-ester: 4-(phenyldiazenyl)phenyl benzene sulfonate—spectral, thermal, and electrochemical behavior and its antimicrobial activity. J Therm Anal Calorim. 2015;120:1151–61.

    CAS  Google Scholar 

  15. Rotaru A, Moanta A, Constantinescu C, Dumitru M, Manolea HO, Andrei A, Dinescu M. Thermokinetic study of CODA azoic liquid crystal and thin films deposition by matrix-assisted pulsed laser evaporation. J Therm Anal Calorim. 2017;128:89–105.

    CAS  Google Scholar 

  16. Leulescu M, Rotaru A, Palarie I, Moanta A, Cioatera N, Popescu M, Morintale E, Bubulica MV, Florian G, Harabor A, Rotaru P. Tartrazine: physical, thermal and biophysical properties of the most widely employed synthetic yellow food-coloring azo dye. J Therm Anal Calorim. 2018;134(1):209–31.

    CAS  Google Scholar 

  17. Leulescu M, Palarie I, Moanta A, Morintale E, Varut MC, Rotaru P, Brown HT. Physical thermal and biophysical properties of the food azo dye. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-018-7766-x.

    Article  Google Scholar 

  18. Rotaru A, Jurca B, Moanta A, Salageanu I, Segal E. Kinetic study of the thermal decomposition of some aromatic ortho-chlorinated azomonoethers 1 Decomposition of 4-[(2-chlorobenzyl)oxi]-4′-triflouromethyl-azobenzene. Rev Roum Chim. 2006;51:373–8.

    CAS  Google Scholar 

  19. Moanta A, Samide A, Rotaru P, Ionescu C, Tutunaru B. Synthesis and characterization of novel furoate azodye using spectral and thermal methods of analysis. J Therm Anal Calorim. 2015;119:1039–45.

    Google Scholar 

  20. Rotaru A, Dumitru M. Thermal behaviour of CODA azoic dye liquid crystal and nanostructuring by drop cast and spin coating techniques. J Therm Anal Calorim. 2017;127:21–32.

    CAS  Google Scholar 

  21. Rotaru A, Moanta A (2016) Azoic dyes: from thermal properties to a wide range of applications. Chapter 4 in: Advanced Engineering Materials. Recent Developments for Medical, Technological and Industrial Applications, Academica Greifswald, 978-3-940237-38-5.

  22. Rotaru A, Gosa M, Segal E. Isoconversional liniar integral kinetics of the non-isothermal evaporation of 4-[(4-chlorobenzyl)oxy]-4′-trifluoromethyl-azobenzene. Stud Univ Babes-Bolyai, Chem. 2011;54:185–92.

    Google Scholar 

  23. Rotaru A, Moanta A, Salageanu I, Budrugeac P, Segal E. Thermal decomposition kinetics of some aromatic azomonoethers. Part I. Decomposition of 4-[(4-chlorobenzyl)oxy]-4′-nitro-azobenzene. J Therm Anal Calorim. 2007;87:395–400.

    CAS  Google Scholar 

  24. Rotaru A, Kropidlowska A, Moanta A, Rotaru P, Segal E. Thermal decomposition kinetics of some aromatic azomonoethers. Part II. Non-isothermal study of three liquid crystals in dynamic air atmosphere. J Therm Anal Calorim. 2008;92:233–8.

    CAS  Google Scholar 

  25. Rotaru A, Moanta A, Rotaru P, Segal E. Thermal decomposition kinetics of some aromatic azomonoethers. Part III. Non-isothermal study of 4-[(4-chlorobenzyl)oxy]-4′-chloroazobenzene in dynamic air atmosphere. J Therm Anal Calorim. 2009;95:161–6.

    CAS  Google Scholar 

  26. Rotaru A, Moanta A, Popa G, Rotaru P, Segal E. Thermal decomposition kinetics of some aromatic azomonoethers. Part IV. Non-isothermal kinetics of 2-allyl-4-((4-(4-methylbenzyloxy) phenyl) diazenyl)phenol in air flow. J Therm Anal Calorim. 2009;97:485–91.

    CAS  Google Scholar 

  27. Massaro M, Coletti CG, Lazzara G, Guernelli S, Noto R, Riela S. Synthesis and characterization of halloysite-cyclodextrin nanosponges for enhanced dyes adsorption. ACS Sustain Chem Eng. 2017;5(4):3346–52.

    CAS  Google Scholar 

  28. Wang S, Shen S, Xu H. Synthesis, spectroscopic and thermal properties of a series of azo metal chelate dyes. Dyes Pigments. 2000;44(3):195–8.

    CAS  Google Scholar 

  29. Qiu J, Tang B, Ju B, Xu Y, Zhang S. Stable diazonium salts of weakly basic amines—convenient reagents for synthesis of disperse azo dyes. Dyes Pigments. 2017;136:63–9.

    CAS  Google Scholar 

  30. Nejati K, Rezvani Z, Seyedahmadian M. The synthesis, characterization, thermal and optical properties of copper, nickel, and vanadyl complexes derived from azo dyes. Dyes Pigments. 2009;83(3):304–11.

    CAS  Google Scholar 

  31. Suzuki Y, Horie M, Okamoto Y, Kurose Y, Maeda S. Thermal and optical properties of metal azo dyes for digital video disc-recordable discs. Jpn J Appl Phys. 1998;37(1):2084.

    CAS  Google Scholar 

  32. El-Sonbati AZ, Diab MA, El-Bindary AA, Shoair AF, Hussein MA, El-Boz RA. Spectroscopic, thermal, catalytic and biological studies of Cu(II) azo dye complexes. J Mol Struct. 2017;1141:186–203.

    CAS  Google Scholar 

  33. Mallikarjuna NM, Keshavayya J, Maliyappa MR, Shoukat Ali RA, Venkatesh T. Synthesis, characterization, thermal and biological evaluation of Cu (II), Co (II) and Ni (II) complexes of azo dye ligand containing sulfamethaxazole moiety. J Mol Struct. 2018;1165:28–36.

    CAS  Google Scholar 

  34. Fioru L, Langfeld HW, Tarabasanu-Mihaila C. Coloranti azoici. Bucharest: Editura Tehnica; 1981.

    Google Scholar 

  35. Regulation (EC) No 1333/2008 of the European Parliament and of the Council of 16 December 2008 on food additives. OJ L 354, 31.12.2008.

  36. Regulation (EU) No 1129/2011 of 11 November 2011 amending Annex II to Regulation (EC) No 1333/2008 of the European Parliament and of the Council by establishing a Union list of food additives. OJ L 295, 12.11.2011.

  37. Shen Y-C. Terahertz pulsed spectroscopy and imaging for pharmaceutical applications: a review. Int J Pharm. 2011;417:48–60.

    CAS  PubMed  Google Scholar 

  38. Zhong S, Shen Y-C, Ho L, Mayd RK, Zeitler JA, Evans M, Taday PF, Pepper M, Rades T, Gordon KC, Müller R, Kleinebudde P. Non-destructive quantification of pharmaceutical tablet coatings using terahertz pulsed imaging and optical coherence tomography. Optic Lasers Eng. 2011;49:361–5.

    Google Scholar 

  39. Lin H, Dong Y, Shen Y, Zeitler JA. Quantifying pharmaceutical film coating with optical coherence tomography and terahertz pulsed imaging: an evaluation. New York: Wiley; 2015.

    Google Scholar 

  40. Zeitler JA, Shen Y, Baker C, Taday PF, Pepper M, Rades T. Analysis of coating structures and interfaces in solid oral dosage forms by three dimensional terahertz pulsed imaging. New York: Wiley; 2006.

    Google Scholar 

  41. Gowen AA, O’Sullivan C, O’Donnell CP. Terahertz time domain spectroscopy and imaging: emerging techniques for food process monitoring and quality control. Trends Food Sci Technol. 2012;25:40–6.

    CAS  Google Scholar 

  42. Parrott EPJ, Sun Y, Pickwell-MacPherson E. Terahertz spectroscopy: its future role in medical diagnoses. J Mol Struct. 2011;1006:66–76.

    CAS  Google Scholar 

  43. Sasaki Tomoyuki, Ono Hiroshi, Kawatsuki Nobuhiro. Anisotropic photonic structures induced by three-dimensional vector holography in dye doped -liquid crystals. J Appl Phys. 2008;104:043524.

    Google Scholar 

  44. Priimagi A, Kaivola M. Enhanced photoinduced birefringence in polymer-dye complexes: hydrogen bonding makes a difference. Appl Phys Lett. 2007;90:121103.

    Google Scholar 

  45. Mendonca CR, Baldacchini T, Tayalia P, Mazur E. Reversible birefringence in microstructures fabricated by two-proton absorption polymerization. J Appl Phys. 2007;102:013109.

    Google Scholar 

  46. Moanta A. Organic chemistry and pollution. Craiova: SITECH Publishing House; 2009. p. 78–86.

    Google Scholar 

  47. Class Names and the International Numbering System for food additives CAC/GL 36–1989. Codex Alimentarius FAO/WHO (2017).

  48. https://en.wikipedia.org/wiki/Ponceau_4R. Accessed Nov 2016.

  49. https://www.microscopyu.com/techniques/polarized-light/principles-of-birefringence. Accessed Oct 2018.

  50. Jianu D, Soare B, Matei L. Proprietăţile optice microscopice ale mineralelor transparente, în lumină polarizată. old.unibuc.ro. 2007. Accessed Jun 2018.

  51. Bojan M, Damian V, Fleaca C, Vasile T. Terahertz spectroscopic investigations of hazardous substances. In: Proceedings of the SPIE Proc Ser. 2016; Vol. 10010, 6 pp.

  52. Strachan CJ, Rades T, Newnham DA, Gordon KC, Pepper M, Taday PF. Using terahertz pulsed spectroscopy to study crystallinity of pharmaceutical materials. Chem Phys Lett. 2004;390:20.

    CAS  Google Scholar 

  53. Taday PF. Applications of terahertz spectroscopy to pharmaceutical sciences. Philos T R Soc A. 2004;362:351–64.

    CAS  Google Scholar 

  54. Bernstein J. Polymorphism in molecular crystals. Oxford: Clarendon Press; 2002.

    Google Scholar 

  55. Day GM, Zeitler JA, Jones W, Rades T, Taday PF. Understanding the influence of polymorphism on phonon spectra: lattice dynamics calculations and terahertz spectroscopy of carbamazepine. J Phys Chem B. 2006;110:447–56.

    CAS  PubMed  Google Scholar 

  56. Qin J, Ying Y, Xie L. The detection of agricultural products and food using terahertz spectroscopy: a review. Appl Spectrosc Rev. 2013;48:439–57.

    Google Scholar 

  57. Ok G, Park K, Kim HJ, Chun HS, Choi S-W. High-speed terahertz imaging toward food quality inspection. OSA Appl Opt. 2014;53:1406–12.

    Google Scholar 

  58. Plusquellic DF, Siegrist K, Heilweil EJ, Esenturk O. Applications of terahertz spectroscopy in biosystems. Chem Phys Chem. 2007;8:2412–31.

    CAS  PubMed  Google Scholar 

  59. Withayachumnankul W, Naftaly M. Fundamentals of measurement in terahertz time-domain spectroscopy. J Infrared Millim TE. 2014;35:610–37.

    CAS  Google Scholar 

  60. Palka N, et al. Comparison of spectra of materials measured by time domain and fourier transform spectroscopy in terahertz range. Photon Lett Poland. 2011;3:76–8.

    CAS  Google Scholar 

  61. Liu HB, Chen YQ, Zhang XC. Characterization of anhydrous and hydrated pharmaceutical materials with THz time-domain spectroscopy. J Pharmacol Sci. 2007;96:927–34.

    CAS  Google Scholar 

  62. Shen J, Wang G, Jiang D, Liang L, Xu X. Terahertz spectroscopic investigations of caffeine and 3-acetylmorphine. Int J Light Electron Opt. 2010;121:1712–6.

    CAS  Google Scholar 

  63. Nishikiori R, Yamaguchi M, Takano K, Enatsu T, Tani M, de Silva UC, Kawashita N, Taragi T, Morimoto S, Hangyo M, Kawase M. Application of partial least square on quantitative analysis of l-, d-, and dl-tartaric acid by terahertz absorption spectra. Chem Pharm Bull. 2008;56:305–7.

    CAS  PubMed  Google Scholar 

  64. Laman N, Harsha SS, Grischkowsky D. Narrow-line waveguide terahertz time-domain spectroscopy of aspirin and aspirin precursors. Appl Spectrosc. 2008;62:319–26.

    CAS  PubMed  Google Scholar 

  65. Newnham DA, Taday PF. Pulsed terahertz attenuated total reflection spectroscopy. Appl Spectrosc. 2008;62:394–8.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petre Rotaru.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leulescu, M., Iacobescu, G., Bojan, M. et al. Ponceau 4R azoic red dye. J Therm Anal Calorim 138, 2091–2101 (2019). https://doi.org/10.1007/s10973-019-08680-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08680-0

Keywords

Navigation