Skip to main content
Log in

Natural convection and melting of NEPCM in a corrugated cavity under the effect of magnetic field

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Numerical study of natural convection and melting in a corrugated square cavity filled with CNT-water nanofluid under the influence of inclined magnetic field was performed. The left and right walls of the cavity are kept at constant temperatures while the horizontal wall is adiabatic. Galerkin weighted residual finite element was used. The effects of Hartmann number (between 0 and 40), magnetic inclination angle (between 0° and 90°), nanoparticle volume fraction (between 0 and 4%), number (between 1 and 20) and height (between 0.002 H and 0.16 H) of the corrugation on the convective heat transfer features and melting in the square cavity were examined. Magnetic field was found to dampen the fluid motion, and less movement of the melt front in the upper part of the cavity is observed. By using the CNT nanoparticles in the base fluid, significant enhancement in the heat transfer and faster propagation of the melt front is observed in the absence and presence of magnetic field. Average heat transfer enhancements are around 118% and 95% when nanofluid at the highest particle volume fraction is compared with water in the absence and presence of magnetic field. The heat transfer is reduced and melt front curve characteristics are affected when the number and height of corrugation waves are increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Hasan A, McCormack S, Huang M, Norton B. Evaluation of phase change materials for thermal regulation enhancement of building integrated photovoltaics. Sol Energy. 2010;84:1601–12.

    CAS  Google Scholar 

  2. Park J, Kim T, Leigh S-B. Application of a phase-change material to improve the electrical performance of vertical-building-added photovoltaics considering the annual weather conditions. Sol Energy. 2014;105:561–74.

    Google Scholar 

  3. Huang M, Eames P, Norton B. Thermal regulation of building-integrated photovoltaics using phase change materials. Int J Heat Mass Transf. 2003;47:2715–33.

    Google Scholar 

  4. Lin W, Ma Z, Sohel MI, Cooper P. Development and evaluation of a ceiling ventilation system enhanced by solar photovoltaic thermal collectors and phase change materials. Energy Convers Manag. 2014;88:218–30.

    Google Scholar 

  5. Smith CJ, Forster PM, Crook R. Global analysis of photovoltaic energy output enhanced by phase change material cooling. Appl Energy. 2014;126:21–8.

    Google Scholar 

  6. Ho C, Tanuwijava A, Lai C-M. Thermal and electrical performance of a bipv integrated with a microencapsulated phase change material layer. Energy Build. 2012;50:331–8.

    Google Scholar 

  7. Brano VL, Ciulla G, Piacentino A, Cardona F. Finite difference thermal model of a latent heat storage system coupled with a photovoltaic device: description and experimental validation. Renew Energy. 2014;68:181–93.

    Google Scholar 

  8. Pahamli Y, Hosseini MJ, Ranjbar AA, Bahrampoury R. Analysis of the effect of eccentricity and operational parameters in pcm-filled single-pass shell and tube heat exchangers. Renew Energy. 2016;97:344–57.

    CAS  Google Scholar 

  9. Jin X, Medina MA, Zhang X. Numerical analysis for the optimal location of a thin PCM layer in frame walls. Appl Therm Eng. 2016;103:1057–63.

    Google Scholar 

  10. Ismail KAR, de Jesus AB. Modeling and solution of the solidification problem of pcm around a cold cylinder. Numer Heat Transf Part A Appl. 1999;36:95–114.

    CAS  Google Scholar 

  11. Srivatsa PVSS, Baby R, Balaji C. Numerical investigation of pcm based heat sinks with embedded metal foam/crossed plate fins. Numer Heat Transf Part A Appl. 2014;66:1131–53.

    CAS  Google Scholar 

  12. Yilbas BS, Shuja SZ, Shaukat MM. Thermal characteristics of latent heat thermal storage: comparison of aluminum foam and mesh configurations. Numer Heat Transf Part A Appl. 2015;68:99–116.

    CAS  Google Scholar 

  13. Gharebaghi M, Sezai I. Enhancement of heat transfer in latent heat storage modules with internal fins. Numer Heat Transf Part A Appl. 2007;53:749–65.

    Google Scholar 

  14. Jmal I, Baccar M. Numerical study of pcm solidification in a finned tube thermal storage including natural convection. Appl Therm Eng. 2015;84:320–30.

    CAS  Google Scholar 

  15. Sheikholeslami M. Numerical simulation for solidification in a lhtess by means of nano-enhanced pcm. J Taiwan Inst Chem Eng. 2018;86:25–41.

    CAS  Google Scholar 

  16. Mumtaz M, Khan A, Ibrahim NI, Mahbubul IM, Ali HM, Al-Sulaiman FA. Evaluation of solar collector designs with integrated latent heat thermal energy storage: a review. Sol Energy. 2018;166:334–50.

    Google Scholar 

  17. Kousksou T, Bruel P, Jamil A, Rhafiki TE, Zeraouli Y. Solar energy materials and solar cells. Sol Energy Mater Sol Cells. 2014;120:59–80.

    CAS  Google Scholar 

  18. Kabeel AE, El-Samadony YAF, El-Maghlany WM. Comparative study on the solar still performance utilizing different pcm. Desalination. 2018;432:89–96.

    CAS  Google Scholar 

  19. Nkurikiyimfura I, Wang Y, Pan Z. Heat transfer enhancement by magnetic nanofluids–a review. Renew Sustain Energy Rev. 2013;21:548–61.

    CAS  Google Scholar 

  20. Ghasemi B, Aminossadati S, Raisi A. Magnetic field effect on natural convection in a nanofluid-filled square enclosure. Int J Therm Sci. 2011;50:1748–56.

    CAS  Google Scholar 

  21. Hamad M, Ismail IPA. Magnetic field effects on free convection flow of a nanofluid past a vertical semi-infinite flat plate. Nonlinear Anal Real World Appl. 2010;12:1338–46.

    Google Scholar 

  22. Sarkar S, Ganguly S, Biswas G. Buoyancy driven convection of nanofluids in an infinitely long channel under the effect of a magnetic field. Int J Heat Mass Transf. 2014;71:328–40.

    CAS  Google Scholar 

  23. Hatami M, Sheikholeslami M, Hosseini M, Ganji DD. Analytical investigation of mhd nanofluid flow in non-parallel walls. J Mol Liq. 2014;194:251–9.

    CAS  Google Scholar 

  24. Sheikholeslami M, Bandpy MG, Ellahi R, Zeeshan A. Simulation of mhd cuo-water nanofluid flow and convective heat transfer considering lorentz forces. J Magn Magn Mater. 2014;369:69–80.

    CAS  Google Scholar 

  25. Kefayati G. Effect of a magnetic field on natural convection in an open cavity subjugated to water/alumina nanofluid using lattice boltzmann method. Int Commun Heat Mass Transf. 2013;40:67–77.

    CAS  Google Scholar 

  26. Selimefendigil F, Oztop HF. Numerical study of mhd mixed convection in a nanofluid filled lid driven square enclosure with a rotating cylinder. Int J Heat Mass Transf. 2014;78:741–54.

    Google Scholar 

  27. Pekmen B, Sezgin MT. Mhd flow and heat transfer in a lid-driven porous enclosure. Comput Fluids. 2014;89:191–9.

    Google Scholar 

  28. Oztop HF, Al-Salem K, Pop I. Mhd mixed convection in a lid-driven cavity with corner heater. Int J Heat Mass Transf. 2011;54:494–3504.

    Google Scholar 

  29. Selimefendigil F, Oztop HF. Modeling and optimization of mhd mixed convection in a lid-driven trapezoidal cavity filled with alumina-water nanofluid: effects of electrical conductivity models. Int J Mech Sci. 2018;136:264–78.

    Google Scholar 

  30. Piratheepan M, Anderson T. An experimental investigation of turbulent forced convection heat transfer by a multi-walled carbon-nanotube nanofluid. Int Commun Heat Mass Transf. 2014;57:286–90.

    CAS  Google Scholar 

  31. Kamali R, Binesh A. Numerical investigation of heat transfer enhancement using carbon nanotube-based non-newtonian nanofluids. Int Commun Heat Mass Transf. 2010;37:1153–7.

    CAS  Google Scholar 

  32. Rahman M, Mojumder S, Saha S, Mekhilef S, Saidur R. Effect of solid volume fraction and tilt angle in a quarter circular solar thermal collectors filled with cnt-water nanofluid. Int Commun Heat Mass Transf. 2014;57:79–90.

    CAS  Google Scholar 

  33. Murshed S, de Castro CAN. Superior thermal features of carbon nanotubes-based nano uids–a review. Renew Sustain Energy Rev. 2014;37:155–67.

    CAS  Google Scholar 

  34. Al-Rashed A, Kolsi L, Oztop HF, Aydi A, Malekshah E Hasani, Abu-Hamdeh N, Borjini MN. 3D magnetoconvective heat transfer in cnt-nanofluid filled cavity under partially active magnetic field. Physica E Low Dimens Syst Nanostruct. 2018;99:294–303.

    CAS  Google Scholar 

  35. Al-Sayegh R. Influence of external magnetic field inclination on three-dimensional buoyancy-driven convection in an open trapezoidal cavity filled with cnt-water nanofluid. Int J Mech Sci. 2018;148:756–65.

    Google Scholar 

  36. Feng Y, Li H, Li L, Zhan F. Investigation of the effect of magnetic field on melting of solid gallium in a bottom-heated rectangular cavity using the lattice boltzmann method. Numer Heat Transf Part A Appl. 2016;69:1263–79.

    CAS  Google Scholar 

  37. Ahmed M, Shuaib N, Yusoff M, Al-Falahi A. Numerical investigations of flow and heat transfer enhancement in a corrugated channel using nanofluid. Int Commun Heat Mass Transf. 2011;38:1368–75.

    CAS  Google Scholar 

  38. Nasrin R, Alim M, Chamkha AJ. Combined convection flow in triangular wavy chamber filled with water-cuo nanofluid: effect of viscosity models. Int Commun Heat Mass Transf. 2012;39:1226–36.

    CAS  Google Scholar 

  39. Hussain SH, Hussein AK, Mohammed RN. Studying the effects of a longitudinal magnetic field and discrete isoflux heat source size on natural convection inside a tilted sinusoidal corrugated enclosure. Comput Math Appl. 2012;64:476–88.

    Google Scholar 

  40. Mohammed KA, Talib ARA, Nuraini AA, Ahmed KA. Review of forced convection nanofluids through corrugated facing step. Renew Sustain Energy Rev. 2017;75:234–41.

    CAS  Google Scholar 

  41. Kareem ZS, Jaafar MNM, Lazim TM, Abdullah S, Abdulwahid AF. Passive heat transfer enhancement review in corrugation. Exp Therm Fluid Sci. 2015;68:22–38.

    Google Scholar 

  42. Selimefendigil F, Oztop HF. Corrugated conductive partition effects on mhd free convection of cnt-water nanofluid in a cavity. Int J Heat Mass Transf. 2019;129:265–77.

    CAS  Google Scholar 

  43. Biwole P, Eclache P, Kuznik F. Phase-change materials to improve solar panels performance. Energy Build. 2013;62:59–67.

    Google Scholar 

  44. Kant K, Shukla A, Sharma A. Heat transfer studies of building brick containing phase change materials. Sol Energy. 2017;155:1233–42.

    CAS  Google Scholar 

  45. Voller V, Prakash C. A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems. Int J Heat Mass Transf. 1987;30:1709–19.

    CAS  Google Scholar 

  46. Brent A, Voller V, Reid K. Enthalpy-porosity technique for modeling convection-diffusion phase change: application to the melting of a pure metal. Numer Heat Transf A Appl. 1988;13:297–318.

    Google Scholar 

  47. Bondareva NS, Buonomo B, Manca O, Sheremet MA. Heat transfer inside cooling system based on phase change material with alumina nanoparticles. Appl Therm Eng. 2018;144:972–81.

    CAS  Google Scholar 

  48. Bondareva NS, Buonomo B, Manca O, Sheremet MA. Heat transfer performance of the finned nano-enhanced phase change material system under the inclination influence. Int J Heat Mass Transf. 2019;135:1063–72.

    CAS  Google Scholar 

  49. Brinkman H. The viscosity of concentrated suspensions and solutions. J Chem Phys. 1952;20:571–81.

    CAS  Google Scholar 

  50. Xue Q. Model for thermal conductivity of carbon nanotube-based composites. Physica B. 2005;368:302–7.

    CAS  Google Scholar 

  51. Zienkiewicz O, Taylor R, Nithiarasu P. The finite element method for fluid dynamics. 6th ed. Amsterdam: Elsevier; 2005.

    Google Scholar 

  52. Reddy J. An introduction to the finite element method. New York: McGraw-Hill; 1993.

    Google Scholar 

  53. Ghalambaz M, Chamkha AJ, Wen D. Natural convective flow and heat transfer of nano-encapsulated phase change materials (nepcms) in a cavity. Int J Heat Mass Transf. 2019;138:738–49.

    Google Scholar 

  54. Chamkha AJ, Doostanidezfuli A, Izadpanahi E, Ghalambaz M. Phase-change heat transfer of single/hybrid nanoparticles-enhanced phase-change materials over a heated horizontal cylinder confined in a square cavity. Adv Powder Technol. 2017;28(2):385–97.

    CAS  Google Scholar 

  55. Pirmohammadi M, Ghassemi M. Effect of magnetic field on convection heat transfer inside a tilted square enclosure. Int Commun Heat Mass Transf. 2009;36:776–80.

    CAS  Google Scholar 

  56. Sarris I, Zikos G, Grecos A, Vlachos N. On the limits of validity of the low magnetic reynolds number approximation in mhd natural-convection heat transfer. Numer Heat Transf Part B. 2006;50:158–80.

    Google Scholar 

  57. Rudraiah N, Barron R, Venkatachalappa M, Subbaraya C. Effect of a magnetic field on free convection in a rectangular enclosure. Int J Eng Sci. 1995;33:1075–84.

    Google Scholar 

  58. Sheikholeslami M, Shamlooei M. Convective flow of nanofluid inside a lid driven porous cavity using cvfem. Physica B. 2017;521:239–50.

    CAS  Google Scholar 

  59. Oztop H, Abu-Nada E. Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. Int J Heat Fluid Flow. 2008;29:1326–36.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatih Selimefendigil.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selimefendigil, F., Öztop, H.F. Natural convection and melting of NEPCM in a corrugated cavity under the effect of magnetic field. J Therm Anal Calorim 140, 1427–1442 (2020). https://doi.org/10.1007/s10973-019-08667-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08667-x

Keywords

Navigation