Phase change materials (PCMs) for improving solar still productivity: a review

Abstract

This paper comprehensively reviews the use of phase change materials (PCMs) as latent heat storage systems to improve the productivity of solar stills. Previous studies on enhancing the productivity of active and passive solar stills with PCM are also presented. These studies show that a passive solar still with PCM shows a productivity improvement of up to 120% compared with a solar still without PCM. Meanwhile, the productivity improvement of an active solar still with PCM could reach as high as 700%. These results indicate that productivity increases along with an increasing PCM mass and a decreasing saline water mass. The PCM is also observed to be less effective in daytime than in night-time. It is also shown that organic PCMs (such as paraffin) were mostly used in studies on productivity improvement, whilst very few studies have examined the effects of inorganic and eutectic types of PCM.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42

Abbreviations

TES:

Thermal energy storage

PCM:

Phase change materials

LHS:

Latent heat storage

NEPCM:

Nano-enhanced PCM

SSPCM:

Shape-stabilised phase change material

PCESM:

Phase change energy storage mixture

GH:

Greenhouses

LHTESS:

Latent heat thermal energy storage system

mpcm:

Mass of phase change material

M w :

Mass of water

FGN:

Flake graphite nanoparticles

PF:

Pin fins

SWF:

Steel wood fibres

CPC:

Compound parabolic concentrator

CCTSS:

Concentric circular tubular solar still

References

  1. 1.

    Gao C, Chen G. Handbook for desalination technology and engineering. China: Chemical Industry Press; 2004.

    Google Scholar 

  2. 2.

    He Z. Solar thermal utilization. China: Press of University of Science and Technology of China; 2009. p. 404.

    Google Scholar 

  3. 3.

    Moss BR. Ecology of fresh waters: man and medium, past to future. Hoboken: Wiley; 2009.

    Google Scholar 

  4. 4.

    Birnhack L, Voutchkov N, Lahav O. Fundamental chemistry and engineering aspects of post-treatment processes for desalinated water—a review. Desalination. 2011;273(1):6–22.

    CAS  Article  Google Scholar 

  5. 5.

    Gnanaraj SJP, Ramachandran S, Christopher DS. Enhancing the design to optimize the performance of double basin solar still. Desalination. 2017;411:112–23.

    CAS  Article  Google Scholar 

  6. 6.

    Sathyamurthy R, El-Agouz S, Nagarajan P, Subramani J, Arunkumar T, Mageshbabu D, et al. A review of integrating solar collectors to solar still. Renew Sustain Energy Rev. 2017;77:1069–97.

    Article  Google Scholar 

  7. 7.

    Chandrashekara M, Yadav A. Water desalination system using solar heat: a review. Renew Sustain Energy Rev. 2017;67:1308–30.

    CAS  Article  Google Scholar 

  8. 8.

    Rufuss DDW, Iniyan S, Suganthi L, Davies P. Solar stills: a comprehensive review of designs, performance and material advances. Renew Sustain Energy Rev. 2016;63:464–96.

    Article  Google Scholar 

  9. 9.

    Panchal H, Sathyamurthy R, Kabeel AE, El-Agouz SA, Rufus D, Arunkumar T, et al. Annual performance analysis of adding different nanofluids in stepped solar still. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08346-x.

    Article  Google Scholar 

  10. 10.

    Davim JP. Modern mechanical engineering: research, development and education. Berlin: Springer; 2014.

    Google Scholar 

  11. 11.

    Hosseini SE. Development of solar energy towards solar city Utopia. Energy Sour Part A Recovery Util Environ Eff. 2019. https://doi.org/10.1080/15567036.2019.1576803.

    Article  Google Scholar 

  12. 12.

    Srithar K, Rajaseenivasan T. Recent fresh water augmentation techniques in solar still and HDH desalination–a review. Renew Sustain Energy Rev. 2018;82:629–44.

    Article  Google Scholar 

  13. 13.

    Zhang Y, Sivakumar M, Yang S, Enever K, Ramezanianpour M. Application of solar energy in water treatment processes: a review. Desalination. 2018;428:116–45.

    CAS  Article  Google Scholar 

  14. 14.

    Kabeel A, El-Agouz S. Review of researches and developments on solar stills. Desalination. 2011;276(1–3):1–12.

    CAS  Article  Google Scholar 

  15. 15.

    Singh D. Energy metrics analysis of N identical evacuated tubular collectors integrated single slope solar still. Energy. 2018;148:546–60.

    Article  Google Scholar 

  16. 16.

    Matrawy K, Alosaimy A, Mahrous A-F. Modeling and experimental study of a corrugated wick type solar still: comparative study with a simple basin type. Energy Convers Manag. 2015;105:1261–8.

    Article  Google Scholar 

  17. 17.

    Abdallah S, Badran O. Sun tracking system for productivity enhancement of solar still. Desalination. 2008;220(1–3):669–76.

    CAS  Article  Google Scholar 

  18. 18.

    Suneesh P, Jayaprakash R, Arunkumar T, Denkenberger D. Effect of air flow on “V” type solar still with cotton gauze cooling. Desalination. 2014;337:1–5.

    CAS  Article  Google Scholar 

  19. 19.

    Nayi KH, Modi KV. Pyramid solar still: a comprehensive review. Renew Sustain Energy Rev. 2018;81:136–48.

    Article  Google Scholar 

  20. 20.

    Manokar AM, Taamneh Y, Kabeel A, Sathyamurthy R, Winston DP, Chamkha AJ. Review of different methods employed in pyramidal solar still desalination to augment the yield of freshwater. Desalin Water Treat. 2018;136:20–30.

    CAS  Article  Google Scholar 

  21. 21.

    Alaudeen A, Johnson K, Ganasundar P, Abuthahir AS, Srithar K. Study on stepped type basin in a solar still. J King Saud Univ Eng Sci. 2014;26(2):176–83.

    Google Scholar 

  22. 22.

    Sharshir SW, Ellakany YM, Algazzar AM, Elsheikh AH, Elkadeem M, Edreis EM et al. A mini review of techniques used to improve the tubular solar still performance for solar water desalination. Process Saf Environ Prot. 2019;124:204–12.

    CAS  Article  Google Scholar 

  23. 23.

    Feilizadeh M, Estahbanati MK, Ahsan A, Jafarpur K, Mersaghian A. Effects of water and basin depths in single basin solar stills: an experimental and theoretical study. Energy Convers Manag. 2016;122:174–81.

    Article  Google Scholar 

  24. 24.

    Velmurugan V, Gopalakrishnan M, Raghu R, Srithar K. Single basin solar still with fin for enhancing productivity. Energy Convers Manag. 2008;49(10):2602–8.

    Article  Google Scholar 

  25. 25.

    Kabeel A, Abdelgaied M, Eisa A. Enhancing the performance of single basin solar still using high thermal conductivity sensible storage materials. J Clean Prod. 2018;183:20–5.

    CAS  Article  Google Scholar 

  26. 26.

    Samuel DH, Nagarajan P, Sathyamurthy R, El-Agouz S, Kannan E. Improving the yield of fresh water in conventional solar still using low cost energy storage material. Energy Convers Manag. 2016;112:125–34.

    Article  Google Scholar 

  27. 27.

    Sahota L, Tiwari G. Effect of Al2O3 nanoparticles on the performance of passive double slope solar still. Sol Energy. 2016;130:260–72.

    CAS  Article  Google Scholar 

  28. 28.

    Mahdi J, Smith B, Sharif A. An experimental wick-type solar still system: design and construction. Desalination. 2011;267(2–3):233–8.

    CAS  Article  Google Scholar 

  29. 29.

    Abu-Arabi M, Zurigat Y, Al-Hinai H, Al-Hiddabi S. Modeling and performance analysis of a solar desalination unit with double-glass cover cooling. Desalination. 2002;143(2):173–82.

    CAS  Article  Google Scholar 

  30. 30.

    Dehghan AA, Afshari A, Rahbar N. Thermal modeling and exergetic analysis of a thermoelectric assisted solar still. Sol Energy. 2015;115:277–88.

    Article  Google Scholar 

  31. 31.

    Kumar RA, Esakkimuthu G, Murugavel KK. Performance enhancement of a single basin single slope solar still using agitation effect and external condenser. Desalination. 2016;399:198–202.

    CAS  Article  Google Scholar 

  32. 32.

    Omara Z, Eltawil MA, ElNashar EA. A new hybrid desalination system using wicks/solar still and evacuated solar water heater. Desalination. 2013;325:56–64.

    CAS  Article  Google Scholar 

  33. 33.

    Xiong J, Xie G, Zheng H. Experimental and numerical study on a new multi-effect solar still with enhanced condensation surface. Energy Convers Manag. 2013;73:176–85.

    Article  Google Scholar 

  34. 34.

    Taghvaei H, Taghvaei H, Jafarpur K, Feilizadeh M, Estahbanati MK. Experimental investigation of the effect of solar collecting area on the performance of active solar stills with different brine depths. Desalination. 2015;358:76–83.

    CAS  Article  Google Scholar 

  35. 35.

    Singh RV, Kumar S, Hasan M, Khan ME, Tiwari G. Performance of a solar still integrated with evacuated tube collector in natural mode. Desalination. 2013;318:25–33.

    CAS  Article  Google Scholar 

  36. 36.

    Srithar K, Rajaseenivasan T, Karthik N, Periyannan M, Gowtham M. Stand alone triple basin solar desalination system with cover cooling and parabolic dish concentrator. Renew Energy. 2016;90:157–65.

    Article  Google Scholar 

  37. 37.

    Singh G, Kumar S, Tiwari G. Design, fabrication and performance evaluation of a hybrid photovoltaic thermal (PVT) double slope active solar still. Desalination. 2011;277(1–3):399–406.

    CAS  Article  Google Scholar 

  38. 38.

    Bhardwaj R, Ten Kortenaar M, Mudde R. Maximized production of water by increasing area of condensation surface for solar distillation. Appl Energy. 2015;154:480–90.

    Article  Google Scholar 

  39. 39.

    Kumar S, Dwivedi V. Experimental study on modified single slope single basin active solar still. Desalination. 2015;367:69–75.

    Article  CAS  Google Scholar 

  40. 40.

    Abdul-Wahab SA, Al-Hatmi YY. Study of the performance of the inverted solar still integrated with a refrigeration cycle. Proc Eng. 2012;33:424–34.

    Article  Google Scholar 

  41. 41.

    Malaeb L, Aboughali K, Ayoub GM. Modeling of a modified solar still system with enhanced productivity. Sol Energy. 2016;125:360–72.

    Article  Google Scholar 

  42. 42.

    Hidouri K, Slama RB, Gabsi S. Hybrid solar still by heat pump compression. Desalination. 2010;250(1):444–9.

    CAS  Article  Google Scholar 

  43. 43.

    Boukar M, Harmim A. Parametric study of a vertical solar still under desert climatic conditions. Desalination. 2004;168:21–8.

    CAS  Article  Google Scholar 

  44. 44.

    Kabeel A, Abdelgaied M. Performance enhancement of modified solar still using multi-groups of two coaxial pipes in basin. Appl Therm Eng. 2017;118:23–32.

    Article  Google Scholar 

  45. 45.

    Sathyamurthy R, Nagarajan P, El-Agouz S, Jaiganesh V, Khanna PS. Experimental investigation on a semi-circular trough-absorber solar still with baffles for fresh water production. Energy Convers Manag. 2015;97:235–42.

    Article  Google Scholar 

  46. 46.

    Sadineni SB, Hurt R, Halford CK, Boehm RF. Theory and experimental investigation of a weir-type inclined solar still. Energy. 2008;33(1):71–80.

    CAS  Article  Google Scholar 

  47. 47.

    Kabeel A, Manokar AM, Sathyamurthy R, Winston DP, El-Agouz S, Chamkha AJ. A review on different design modifications employed in inclined solar still for enhancing the productivity. J Sol Energy Eng. 2019;141(3):031007.

    CAS  Article  Google Scholar 

  48. 48.

    Eltawil MA, Omara Z. Enhancing the solar still performance using solar photovoltaic, flat plate collector and hot air. Desalination. 2014;349:1–9.

    CAS  Article  Google Scholar 

  49. 49.

    Park C-D, Lim B-J, Chung K-Y, Lee S-S, Kim Y-M. Experimental evaluation of hybrid solar still using waste heat. Desalination. 2016;379:1–9.

    CAS  Article  Google Scholar 

  50. 50.

    Raj MAF, Sekhar SJ. Investigation of energy and exergy performance on a small-scale refrigeration system with PCMs inserted between coil and wall of the evaporator cabin. J Therm Anal Calorim. 2019;136(1):355–65.

    Article  CAS  Google Scholar 

  51. 51.

    Akeiber HJ, Hosseini SE, Wahid MA, Hussen HM, Mohammad AT. Phase change materials-assisted heat flux reduction: experiment and numerical analysis. Energies. 2016;9(1):30.

    Article  CAS  Google Scholar 

  52. 52.

    Ghalambaz M, Doostani A, Chamkha AJ, Ismael MA. Melting of nanoparticles-enhanced phase-change materials in an enclosure: effect of hybrid nanoparticles. Int J Mech Sci. 2017;134:85–97.

    Article  Google Scholar 

  53. 53.

    Sarbu I, Sebarchievici C. A comprehensive review of thermal energy storage. Sustainability. 2018;10(1):191.

    Article  CAS  Google Scholar 

  54. 54.

    Omara AA, Abuelnuor AA, Dafaallah MA, Ali AM, Alshoubli MA, editors. Energy and Exergy analysis of solar water heating system integrated with phase change material (PCM). 2018 International conference on computer, control, electrical, and electronics engineering (ICCCEEE). IEEE; 2018.

  55. 55.

    Omara AA, Abuelnuor AA, Mohammed AO, Sirelkhatim OM, Suleman AA, editors. An experimental study on using polyethylene glycol (PEG) 600 as phase change material for thermal comfort and energy saving in buildings. 2018 international conference on computer, control, electrical, and electronics engineering (ICCCEEE). IEEE; 2018.

  56. 56.

    Mondal S. Phase change materials for smart textiles—an overview. Appl Therm Eng. 2008;28(11–12):1536–50.

    CAS  Article  Google Scholar 

  57. 57.

    Tan F, Tso C. Cooling of mobile electronic devices using phase change materials. Appl Therm Eng. 2004;24(2–3):159–69.

    CAS  Article  Google Scholar 

  58. 58.

    Omara AA, Abuelnour AA. Improving the performance of air conditioning systems by using phase change materials: a review. Int J Energy Res. 2019;43(10):5175–98.

    Article  Google Scholar 

  59. 59.

    Abuelnuor AA, Omara AA, Saqr KM, Elhag IH. Improving indoor thermal comfort by using phase change materials: a review. Int J Energy Res. 2018;42(6):2084–103.

    CAS  Article  Google Scholar 

  60. 60.

    Boukani NH, Dadvand A, Chamkha AJ. Melting of a Nano-enhanced Phase Change Material (NePCM) in partially-filled horizontal elliptical capsules with different aspect ratios. Int J Mech Sci. 2018;149:164–77.

    Article  Google Scholar 

  61. 61.

    Chamkha A, Doostanidezfuli A, Izadpanahi E, Ghalambaz M. Phase-change heat transfer of single/hybrid nanoparticles-enhanced phase-change materials over a heated horizontal cylinder confined in a square cavity. Adv Powder Technol. 2017;28(2):385–97.

    CAS  Article  Google Scholar 

  62. 62.

    Nasrin R, Alim M, Chamkha AJ. Effects of physical parameters on natural convection in a solar collector filled with nanofluid. Heat Transf Asian Res. 2013;42(1):73–88.

    Article  Google Scholar 

  63. 63.

    Ghalambaz M, Doostani A, Izadpanahi E, Chamkha A. Phase-change heat transfer in a cavity heated from below: the effect of utilizing single or hybrid nanoparticles as additives. J Taiwan Inst Chem Eng. 2017;72:104–15.

    CAS  Article  Google Scholar 

  64. 64.

    Wang A, Li J, Zhang T. Heterogeneous single-atom catalysis. Nat Rev Chem. 2018;2(6):65.

    CAS  Article  Google Scholar 

  65. 65.

    Bhattarai B, Zaker Y, Atnagulov A, Yoon B, Landman U, Bigioni TP. Chemistry and structure of silver molecular nanoparticles. Acc Chem Res. 2018;51(12):3104–13.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  66. 66.

    Smith YR, Nagel JR, Rajamani RK. Eddy current separation for recovery of non-ferrous metallic particles: a comprehensive review. Miner Eng. 2019;133:149–59.

    CAS  Article  Google Scholar 

  67. 67.

    Jegadheeswaran S, Sundaramahalingam A, Pohekar SD. High-conductivity nanomaterials for enhancing thermal performance of latent heat thermal energy storage systems. J Therm Anal Calorim. https://doi.org/10.1007/s10973-019-08297-3.

    Article  Google Scholar 

  68. 68.

    Wei S, Duan Z, Xia Y, Huang C, Ji R, Zhang H, et al. Preparation and thermal performances of microencapsulated phase change materials with a nano-Al2O3-doped shell. J Thermal Anal Calorim. https://doi.org/10.1007/s10973-019-08097-9.

    Article  Google Scholar 

  69. 69.

    Su W, Darkwa J, Kokogiannakis G. Review of solid–liquid phase change materials and their encapsulation technologies. Renew Sustain Energy Rev. 2015;48:373–91.

    CAS  Article  Google Scholar 

  70. 70.

    Cheng W-L, Zhang R-M, Xie K, Liu N, Wang J. Heat conduction enhanced shape-stabilized paraffin/HDPE composite PCMs by graphite addition: preparation and thermal properties. Solar Energy Mater Solar Cells. 2010;94(10):1636–42.

    CAS  Article  Google Scholar 

  71. 71.

    Genc M, Genc ZK. Microencapsulated myristic acid–fly ash with TiO 2 shell as a novel phase change material for building application. J Therm Anal Calorim. 2018;131(3):2373–80.

    CAS  Article  Google Scholar 

  72. 72.

    Han L, Ma G, Xie S, Sun J, Jia Y, Jing Y. Preparation and characterization of the shape-stabilized phase change material based on sebacic acid and mesoporous MCM-41. J Therm Anal Calorim. 2017;130(2):935–41.

    CAS  Article  Google Scholar 

  73. 73.

    Wang Z, Zhang X, Jia S, Zhu Y, Chen L, Fu L. Influences of dynamic impregnating on morphologies and thermal properties of polyethylene glycol-based composite as shape-stabilized PCMs. J Therm Anal Calorim. 2017;128(2):1039–48.

    CAS  Article  Google Scholar 

  74. 74.

    Zhai M, Zhang S, Sui J, Tian F, Lan XZ. Solid–solid phase transition of tris (hydroxymethyl) aminomethane in nanopores of silica gel and porous glass for thermal energy storage. J Therm Anal Calorim. 2017;129(2):957–64.

    CAS  Article  Google Scholar 

  75. 75.

    Aftab W, Huang X, Wu W, Liang Z, Mahmood A, Zou R. Nanoconfined phase change materials for thermal energy applications. Energy Environ Sci. 2018;11(6):1392–424.

    CAS  Article  Google Scholar 

  76. 76.

    Sami S, Etesami N. Thermal characterization of obtained microencapsulated paraffin under optimal conditions for thermal energy storage. J Therm Anal Calorim. 2017;130(3):1961–71.

    CAS  Article  Google Scholar 

  77. 77.

    Wu W, Zuo H. Preparation and characterization of n-octadecane/poly (styrene–methyl methacrylate) phase-change microcapsule. J Therm Anal Calorim. 2017;130(2):861–7.

    CAS  Article  Google Scholar 

  78. 78.

    Zhao C-Y, Zhang GH. Review on microencapsulated phase change materials (MEPCMs): fabrication, characterization and applications. Renew Sustain Energy Rev. 2011;15(8):3813–32.

    CAS  Article  Google Scholar 

  79. 79.

    Sarı A, Alkan C, Biçer A. Thermal energy storage characteristics of micro-nanoencapsulated heneicosane and octacosane with poly (methylmethacrylate) shell. J Microencapsul. 2016;33(3):221–8.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  80. 80.

    Shukla A, Kant K, Sharma A. Solar still with latent heat energy storage: a review. Innov Food Sci Emerg Technol. 2017;41:34–46.

    Article  Google Scholar 

  81. 81.

    Akash BA, Mohsen MS, Osta O, Elayan Y. Experimental evaluation of a single-basin solar still using different absorbing materials. Renew Energy. 1998;14(1–4):307–10.

    Article  Google Scholar 

  82. 82.

    Naim MM, El Kawi MAA. Non-conventional solar stills Part 2. Non-conventional solar stills with energy storage element. Desalination. 2003;153(1–3):71–80.

    CAS  Article  Google Scholar 

  83. 83.

    Radhwan AM. Transient performance of a stepped solar still withbuilt-in latent heat thermal energy storage. Desalination. 2005;171(1):61–76.

    CAS  Article  Google Scholar 

  84. 84.

    El-Sebaii A, Al-Ghamdi A, Al-Hazmi F, Faidah AS. Thermal performance of a single basin solar still with PCM as a storage medium. Appl Energy. 2009;86(7–8):1187–95.

    CAS  Article  Google Scholar 

  85. 85.

    Tabrizi FF, Dashtban M, Moghaddam H. Experimental investigation of a weir-type cascade solar still with built-in latent heat thermal energy storage system. Desalination. 2010;260(1–3):248–53.

    CAS  Article  Google Scholar 

  86. 86.

    Dashtban M, Tabrizi FF. Thermal analysis of a weir-type cascade solar still integrated with PCM storage. Desalination. 2011;279(1–3):415–22.

    CAS  Article  Google Scholar 

  87. 87.

    Singh H, Tiwari G. Monthly performance of passive and active solar stills for different Indian climatic conditions. Desalination. 2004;168:145–50.

    CAS  Article  Google Scholar 

  88. 88.

    Al-Hamadani A, Shukla S. Water distillation using solar energy system with lauric acid as storage medium. Int J Energy Eng. 2011;1(1):1–8.

    Article  Google Scholar 

  89. 89.

    Ravishankara S, Nagarajan P, Vijayakumar D, Jawahar M. Phase change material on augmentation of fresh water production using pyramid solar still. Int J Renew Energy Dev. 2013;2(3):115.

    Google Scholar 

  90. 90.

    Ansari O, Asbik M, Bah A, Arbaoui A, Khmou A. Desalination of the brackish water using a passive solar still with a heat energy storage system. Desalination. 2013;324:10–20.

    CAS  Article  Google Scholar 

  91. 91.

    Ramasamy S, Sivaraman B. Heat transfer enhancement of solar still using phase change materials (PCMs). Int J Eng Adv Technol. 2013;2(3):597–600.

    Google Scholar 

  92. 92.

    Sathyamurthy R, Nagarajan P, Subramani J, Vijayakumar D, Ali KMA. Effect of water mass on triangular pyramid solar still using phase change material as storage medium. Energy Procedia. 2014;61:2224–8.

    Article  Google Scholar 

  93. 93.

    Sathyamurthy R, Nagarajan P, Kennady H, Ravikumar T, Paulson V, Ahsan A. Enhancing the heat transfer of triangular pyramid solar still using phase change material as storage material. Front Heat Mass Transf. 2014;5(1):1–5.

    Google Scholar 

  94. 94.

    Swetha K, Venugopal J. Experimental investigation of a single slope solar still using PCM. Int J Res Environ Sci Technol. 2011;1(4):30–3.

    Google Scholar 

  95. 95.

    Rai AK, Sachan V. Experimental study of a tubular solar still with phase change material. J Impact Factor. 2015;6(1):42–6.

    Google Scholar 

  96. 96.

    Kumar A, Rai AK, Garg R, editors. Experimental investigation of a passive solar still with paraffin wax as latent heat storage. 2015 International conference on technologies for sustainable development (ICTSD). IEEE; 2015.

  97. 97.

    Somanchi NS, Sagi SLS, Kumar TA, Kakarlamudi SPD, Parik A. Modelling and analysis of single slope solar still at different water depth. Aquatic Proc. 2015;4:1477–82.

    Article  Google Scholar 

  98. 98.

    Gugulothu R, Somanchi NS, Vilasagarapu D, Banoth HB. Solar water distillation using three different phase change materials. Mater Today Proc. 2015;2(4–5):1868–75.

    Article  Google Scholar 

  99. 99.

    Gugulothu R, Somanchi NS, Devi RSR, Banoth HB. Experimental investigations on performance evaluation of a single basin solar still using different energy absorbing materials. Aquat Proc. 2015;4:1483–91.

    Article  Google Scholar 

  100. 100.

    Sathyamurthy R, Nagarajan P, Vijayakumar D, editors. Experimental validation of fresh water production using triangular pyramid solar still with PCM storage. International journal of engineering research in Africa. Trans Tech Publ; 2016.

  101. 101.

    Chaichan MT, Kazem HA. Using aluminium powder with PCM (paraffin wax) to enhance single slope solar water distillation productivity in Baghdad-Iraq Winter weathers. Int J Renew Energy Res. 2015;5(1):251–7.

    Google Scholar 

  102. 102.

    Shalaby S, El-Bialy E, El-Sebaii A. An experimental investigation of a v-corrugated absorber single-basin solar still using PCM. Desalination. 2016;398:247–55.

    CAS  Article  Google Scholar 

  103. 103.

    Asbik M, Ansari O, Bah A, Zari N, Mimet A, El-Ghetany H. Exergy analysis of solar desalination still combined with heat storage system using phase change material (PCM). Desalination. 2016;381:26–37.

    CAS  Article  Google Scholar 

  104. 104.

    Kabeel A, Abdelgaied M. Improving the performance of solar still by using PCM as a thermal storage medium under Egyptian conditions. Desalination. 2016;383:22–8.

    CAS  Article  Google Scholar 

  105. 105.

    Sarhaddi F, Tabrizi FF, Zoori HA, Mousavi SAHS. Comparative study of two weir type cascade solar stills with and without PCM storage using energy and exergy analysis. Energy Convers Manag. 2017;133:97–109.

    CAS  Article  Google Scholar 

  106. 106.

    Kabeel A, Teamah MA, Abdelgaied M, Aziz GBA. Modified pyramid solar still with v-corrugated absorber plate and PCM as a thermal storage medium. J Clean Prod. 2017;161:881–7.

    CAS  Article  Google Scholar 

  107. 107.

    Sharshir S, Peng G, Wu L, Essa F, Kabeel A, Yang N. The effects of flake graphite nanoparticles, phase change material, and film cooling on the solar still performance. Appl Energy. 2017;191:358–66.

    CAS  Article  Google Scholar 

  108. 108.

    Kabeel A, El-Samadony Y, El-Maghlany WM. Comparative study on the solar still performance utilizing different PCM. Desalination. 2018;432:89–96.

    CAS  Article  Google Scholar 

  109. 109.

    Rufuss DDW, Iniyan S, Suganthi L, Davies P. Nanoparticles enhanced phase change material (NPCM) as heat storage in solar still application for productivity enhancement. Energy Proc. 2017;141:45–9.

    Article  CAS  Google Scholar 

  110. 110.

    Rufuss DDW, Suganthi L, Iniyan S, Davies P. Effects of nanoparticle-enhanced phase change material (NPCM) on solar still productivity. J Clean Prod. 2018;192:9–29.

    Article  CAS  Google Scholar 

  111. 111.

    Sakthivel M, Shanmugasundaram S, Alwarsamy T. An experimental study on a regenerative solar still with energy storage medium-Jute cloth. Desalination. 2010;264(1–2):24–31.

    CAS  Article  Google Scholar 

  112. 112.

    Chaichan MT, Kazem HA. Single slope solar distillator productivity improvement using phase change material and Al2O3 nanoparticle. Sol Energy. 2018;164:370–81.

    CAS  Article  Google Scholar 

  113. 113.

    Cheng W-L, Huo Y-K, Nian Y-L. Performance of solar still using shape-stabilized PCM: experimental and theoretical investigation. Desalination. 2019;455:89–99.

    CAS  Article  Google Scholar 

  114. 114.

    Kumar TS, Jegadheeswaran S, Chandramohan P. Performance investigation on fin type solar still with paraffin wax as energy storage media. J Therm Anal Calorim. 2019;136(1):101–12.

    Article  CAS  Google Scholar 

  115. 115.

    Yousef MS, Hassan H, Kodama S, Sekiguchi H. An experimental study on the performance of single slope solar still integrated with a PCM-based pin-finned heat sink. Energy Proc. 2019;156:100–4.

    Article  Google Scholar 

  116. 116.

    Yousef MS, Hassan H. Energetic and exergetic performance assessment of the inclusion of phase change materials (PCM) in a solar distillation system. Energy Convers Manag. 2019;179:349–61.

    Article  Google Scholar 

  117. 117.

    Yousef MS, Hassan H. An experimental work on the performance of single slope solar still incorporated with latent heat storage system in hot climate conditions. J Clean Prod. 2019;209:1396–410.

    Article  Google Scholar 

  118. 118.

    Yousef MS, Hassan H. Assessment of different passive solar stills via exergoeconomic, exergoenvironmental, and exergoenviroeconomic approaches: a comparative study. Sol Energy. 2019;182:316–31.

    Article  Google Scholar 

  119. 119.

    Kabeel A, Abdelaziz GB, El-Said EM. Experimental investigation of a solar still with composite material heat storage: energy, exergy and economic analysis. J Clean Prod. 2019;231:21–34.

    Article  Google Scholar 

  120. 120.

    Kabeel A, Abdelgaied M, Eisa A. Effect of graphite mass concentrations in a mixture of graphite nanoparticles and paraffin wax as hybrid storage materials on performances of solar still. Renew Energy. 2019;132:119–28.

    CAS  Article  Google Scholar 

  121. 121.

    Gowtham M, Chander MS, Mallikarujanan KSS, Karthikeyan N. Concentrated parabolic solar distiller with latent heat storage capacity. Int J Chem Eng Appl. 2011;2(3):185.

    CAS  Google Scholar 

  122. 122.

    Gowtham M, Neiel KR, Nagarajan V, Dass PC, Thimothy A. Integrated performance analysis of latent heat storage and finned type solar distiller. Int J Eng Technol. 2012;4(5):613.

    Article  Google Scholar 

  123. 123.

    Arunkumar T, Denkenberger D, Ahsan A, Jayaprakash R. The augmentation of distillate yield by using concentrator coupled solar still with phase change material. Desalination. 2013;314:189–92.

    CAS  Article  Google Scholar 

  124. 124.

    Chaichan MT, Abaas KI, Kazem HA. Design and assessment of solar concentrator distillating system using phase change materials (PCM) suitable for desertic weathers. Desalinat Water Treat. 2016;57(32):14897–907.

    CAS  Article  Google Scholar 

  125. 125.

    Kabeel A, Abdelgaied M, Mahgoub M. The performance of a modified solar still using hot air injection and PCM. Desalination. 2016;379:102–7.

    CAS  Article  Google Scholar 

  126. 126.

    Arunkumar T, Kabeel A. Effect of phase change material on concentric circular tubular solar still-Integration meets enhancement. Desalination. 2017;414:46–50.

    CAS  Article  Google Scholar 

  127. 127.

    Faegh M, Shafii MB. Experimental investigation of a solar still equipped with an external heat storage system using phase change materials and heat pipes. Desalination. 2017;409:128–35.

    CAS  Article  Google Scholar 

  128. 128.

    Kabeel A, Abdelgaied M. Observational study of modified solar still coupled with oil serpentine loop from cylindrical parabolic concentrator and phase changing material under basin. Sol Energy. 2017;144:71–8.

    Article  Google Scholar 

  129. 129.

    Al-harahsheh M, Abu-Arabi M, Mousa H, Alzghoul Z. Solar desalination using solar still enhanced by external solar collector and PCM. Appl Therm Eng. 2018;128:1030–40.

    Article  Google Scholar 

  130. 130.

    Kabeel A, Elkelawy M, El Din HA, Alghrubah A. Investigation of exergy and yield of a passive solar water desalination system with a parabolic concentrator incorporated with latent heat storage medium. Energy Convers Manag. 2017;145:10–9.

    CAS  Article  Google Scholar 

  131. 131.

    Amarloo A, Shafii M. Enhanced solar still condensation by using a radiative cooling system and phase change material. Desalination. 2019;467:43–50.

    CAS  Article  Google Scholar 

  132. 132.

    Saleel CA, Mujeebu MA, Algarni S. Coconut oil as phase change material to maintain thermal comfort in passenger vehicles. J Therm Anal Calorim. 2019;136(2):629–36.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the University of Khartoum for supporting this research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Adil A. M. Omara.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Omara, A.A.M., Abuelnuor, A.A.A., Mohammed, H.A. et al. Phase change materials (PCMs) for improving solar still productivity: a review. J Therm Anal Calorim 139, 1585–1617 (2020). https://doi.org/10.1007/s10973-019-08645-3

Download citation

Keywords

  • Solar still
  • Productivity
  • PCMs
  • Desalination
  • Thermal energy storage