Skip to main content
Log in

Thermal analysis, synthesis and structural studies of heterometallic {Fe2MO} salicylate complexes

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Four new trinuclear heterometallic molecular complexes with the {FeIII2MII μ3-O} core, where M = Mn(II), Ni(II), Cu(II) and Zn(II), have been synthesized by the reaction between iron nitrate and d-metal salts with ammonium salicylate in a mixture of solvents. The compounds were obtained as crystalline material suitable for single-crystal structure analysis with the following composition: [Fe2MnO(SalH)6(EtOH)(MeOH)2]·DMAA·EtOH·2MeOH·H2O (1); [Fe2NiO(SalH)6(EtOH)(MeOH)2]⋅DMAA⋅2MeOH⋅1.5H2O (2); [Fe2CuO(SalH)6(EtOH)(MeOH)2]⋅DMAA⋅4H2O (3); [Fe2ZnO(SalH)6(EtOH)(MeOH)2]⋅DMF⋅2MeOH⋅1.5H2O (4), where SalH = monodeprotonated salicylic ligand. The elemental analysis and IR spectra of the complexes 1–4 are in good agreement with the crystallographic data. The Mössbauer parameters are characteristic to iron(III) complexes with a spin value of S = 5/2. The thermal properties of all compounds have been studied in air and nitrogen atmosphere at the 20–1000 °C temperature range. The thermal analysis data revealed that after the elimination of external solvent molecules, the trinuclear core of the complexes is stable up to 250 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Liu Y, Eubank JF, Cairns AJ, Eckert J, Kravtsov VC, Luebke R, et al. Assembly of metal–organic frameworks (MOFs) based on indium-trimer building blocks: a porous MOF with soc topology and high hydrogen storage. Angew Chem Int Ed. 2007;46:3278–83.

    Article  CAS  Google Scholar 

  2. Iacob M, Racles C, Tugui C, Stiubianu G, Bele A, Sacarescu L, et al. From iron coordination compounds to metal oxide nanoparticles. Beilstein J Nanotechnol. 2016;7:2074–87.

    Article  CAS  Google Scholar 

  3. Turta C, Melnic S, Prodius D, Macaev F, Stoeckli-Evans H, Ruiz P, et al. Sunflower oil coating on the nanoparticles of iron(III) oxides. Inorg Chem Commun. 2010;13:1402–5.

    Article  CAS  Google Scholar 

  4. Prodius D, Macaev F, Mereacre V, Shova S, Lutsenco Y, Styngach E, et al. Synthesis and characterization of Fe2CuO clusters as precursors for nanosized catalytic system for Biginelli reaction. Inorg Chem Commun. 2009;12:642–5.

    Article  CAS  Google Scholar 

  5. Melnic S, Prodius D, Stoeckli-Evans H, Shova S, Turta C. Synthesis and anti-tuberculosis activity of new hetero(Mn Co, Ni)trinuclear iron(III) furoates. Eur J Med Chem. 2010;45:1465–9.

    Article  CAS  Google Scholar 

  6. Melnic S, Prodius D, Simmons C, Zosim L, Chiriac T, Bulimaga V, et al. Biotechnological application of homo- and heterotrinuclear iron(III) furoates for cultivation of iron-enriched Spirulina. Inorg Chim Acta. 2011;373:167–72.

    Article  CAS  Google Scholar 

  7. Cannon RD, White RP. Chemical and physical properties of triangular bridged metal complexes. In: Lippard SJ, editor. Progress in inorganic chemistry. Hoboken: Wiley; 2007. p. 195–298.

    Chapter  Google Scholar 

  8. Turta C, Melnic S, Bettinelli M, Shova S, Benelli C, Speghini A, et al. Synthesis, crystal structure, magnetic and luminescence investigations of new 2Ln3+–Sr2+ heteronuclear polymers with 2-furoic acid. Inorg Chim Acta. 2007;360:3047–54.

    Article  CAS  Google Scholar 

  9. Oh SM, Hendrickson DN, Hassett KL, Davis RE. Electron transfer in mixed-valence, oxo-centered, trinuclear iron acetate complexes: effect of statically disordered to dynamically disordered transformation in the solid state. J Am Chem Soc. 1984;106:7984–5.

    Article  CAS  Google Scholar 

  10. Long GJ, Robinson WT, Tappmeyer WP, Bridges DL. The magnetic, electronic, and Mössbauer spectral properties of several trinuclear iron(III) carboxylate complexes. J Chem Soc Dalton Trans. 1973;6:573–9.

    Article  Google Scholar 

  11. Gorinchoy V, Shova S, Melnic E, Kravtsov V, Turta C. Homotrinuclear Fe III3 μ-oxo salicylate cluster synthesis, structure and properties. Chem J Mold. 2013;8:83–9.

    Article  CAS  Google Scholar 

  12. Hayat S, Ahmad A, editors. Salicylic acid: a plant hormone. Dordrecht: Springer; 2007.

    Google Scholar 

  13. Supapvanich S, Promyou S. Efficiency of salicylic acid application on postharvest perishable crops. In: Hayat S, Ahmad A, Alyemeni MN, editors. Salicylic acid. Dordrecht: Springer; 2013. p. 339–55.

    Chapter  Google Scholar 

  14. Holm RH, Kennepohl P, Solomon EI. Structural and functional aspects of metal sites in biology. Chem Rev. 1996;96:2239–314.

    Article  CAS  Google Scholar 

  15. Dempsey DA, Vlot AC, Wildermuth MC, Klessig DF. Salicylic acid biosynthesis and metabolism. Arabidopsis Book. 2011;9:e0156.

    Article  Google Scholar 

  16. Praveen DK, Madhavi D, Anil Kumar K, Kranthi Kumar Y. Coordination chemistry of salicylic acid. Int J Eng Sci Invent. 2016;5:8–10.

    Article  Google Scholar 

  17. Koksharova TV, Kurando SV, Stoyanova IV. Coordination compounds of 3d-metals salicylates with thiosemicarbazide. Russ J Gen Chem. 2012;82:1481–4.

    Article  CAS  Google Scholar 

  18. Rissanen K, Valkonen J, Kokkonen P, Leskelä M, Niinistö L. Structural and thermal studies on salicylato complexes of divalent manganese, nickel, copper and zinc. Acta Chem Scand. 1987;41a:299–309.

    Article  Google Scholar 

  19. Kuppusamy K, Govindarajan S. Synthesis, spectral and thermal studies of some 3d-metal hydroxybenzoate hydrazinate complexes. Thermochim Acta. 1996;274:125–38.

    Article  CAS  Google Scholar 

  20. Lajunen LHJ, Kokkonen P. Solid state decomposition studies of some metal(II)salicylato complexes. Thermochim Acta. 1985;85:55–8.

    Article  CAS  Google Scholar 

  21. Kokkonen P, Lajunen LHJ, Jaakkola A, Nissi A. Solid-state decomposition studies on 5-substituted salicylates. Kinetics of the isothermal decomposition of hydrated copper(II) 5-substituted salicylates. Thermochim Acta. 1984;76:229–35.

    Article  CAS  Google Scholar 

  22. Lajunen LHJ, Kokkonen P, Nissi A, Ruotsalainen H. Thermal decomposition of hydrated copper(II) 5-substituted salicylates. Thermochim Acta. 1984;72:219–24.

    Article  CAS  Google Scholar 

  23. Department of Chemistry, Benue State University, Makurdi, Yiase SG, Adejo SO, Gbertyo JA, Edeh J. Synthesis, characterization and antimicrobial studies of salicylic acid complexes of some transition metals. IOSR J Appl Chem. 2014;7:4–5.

    Google Scholar 

  24. Deacon GB, Forsyth CM, Behrsing T, Konstas K, Forsyth M. Heterometallic CeIII–FeIII–salicylate networks: models for corrosion mitigation of steel surfaces by the ‘Green’ inhibitor, Ce(salicylate)3. Chem Commun. 2002;23:2820–1.

    Article  CAS  Google Scholar 

  25. Mukherjee S, Lan Y, Novitchi G, Kostakis GE, Anson CE, Powell AK. Syntheses, structures and magnetic studies of three heterometallic Fe2Ln 1D coordination polymers. Polyhedron. 2009;28:1782–7.

    Article  CAS  Google Scholar 

  26. Gorinchoi VV, Turte KI, Simonov YA, Shova SG, Lipkovskii Y, Shofranskii VN. Heteronuclear Fe–Ba, Fe–Sr salicylate complexes. Synthesis, structure, and physicochemical properties. Russ J Coord Chem. 2009;35:279–85.

    Article  CAS  Google Scholar 

  27. Gorinchoy VV, Zubareva VE, Shova SG, Szafranski VN, Lipkowski J, Stanica N, et al. Homo- and heteronuclear iron complexes Fe2MO with salicylic acid: synthesis, structures, and physicochemical properties. Russ J Coord Chem. 2009;35:731–9.

    Article  CAS  Google Scholar 

  28. Gorinchoy V, Zubareva V, Melnic E, Kravtsov V. Heterotrinuclear [Fe III2 NiII]-µ3-oxo-cluster based on salicylic acid. Synthesis, structure and physico-chemical properties. Chem J Mold. 2018;13:46–53.

    Article  CAS  Google Scholar 

  29. Agilent Technologies, CrysAlis PRO (Version 1.171.37.33), Agilent Technologies, Yarnton. 2014.

  30. Sheldrick GM. A short history of SHELX. Acta Crystallogr Sect A Found Crystallogr. 2008;64:112–22.

    Article  CAS  Google Scholar 

  31. Sheldrick GM. Crystal structure refinement with SHELXL. Acta Crystallogr Sect C Struct Chem. 2015;71:3–8.

    Article  CAS  Google Scholar 

  32. Macrae CF, Edgington PR, McCabe P, Pidcock E, Shields GP, Taylor R, et al. Mercury: visualization and analysis of crystal structures. J Appl Crystallogr. 2006;39:453–7.

    Article  CAS  Google Scholar 

  33. Spek AL. Single-crystal structure validation with the program PLATON. J Appl Crystallogr. 2003;36:7–13.

    Article  CAS  Google Scholar 

  34. Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds. 6th ed. Hoboken: Wiley; 2009.

    Google Scholar 

  35. Lewandowski W, Janowski A. Effect of ionic potentials of metals on perturbation of the aromatic system of benzoic acid. J Mol Struct. 1988;174:201–6.

    Article  CAS  Google Scholar 

  36. Calu L, Badea M, Čelan Korošin N, Chifiriuc MC, Bleotu C, Stanică N, et al. Spectral, thermal and biological characterization of complexes with a Schiff base bearing triazole moiety as potential antimicrobial species. J Therm Anal Calorim. 2018;134:1839–50. https://doi.org/10.1007/s10973-018-7871-x

    Article  CAS  Google Scholar 

  37. Goldanskii VI, Herber RH. Chemical applications of Mössbauer spectroscopy. New York: Academic Press; 1968.

    Google Scholar 

Download references

Acknowledgements

This work was realized under the supervision of Prof. Constantin TURTA (20.12.1940–23.03.2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viorina Gorinchoy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorinchoy, V., Cuzan-Munteanu, O., Petuhov, O. et al. Thermal analysis, synthesis and structural studies of heterometallic {Fe2MO} salicylate complexes. J Therm Anal Calorim 138, 2623–2633 (2019). https://doi.org/10.1007/s10973-019-08642-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08642-6

Keywords

Navigation