Skip to main content

Numerical investigation of turbulent flow and heat transfer of nanofluid inside a wavy microchannel with different wavelengths

Abstract

In the present study, turbulent flow and heat transfer inside a three-dimensional wavy microchannel with different wavelengths have been numerically simulated. The main purpose of this study is to investigate the effects of changing the wavelength of the sinusoidal microchannel and CuO nanoparticle concentration on flow and heat transfer properties. For this reason, flow is simulated at Reynolds numbers of 3000, 4500, 6000, and 7500 with volume fractions of 0, 1.5, and 3% in three different geometries and the effects of each parameter have been investigated. Validation of the results showed there is an excellent agreement between the presented results with the previous studies. The average Nusselt number, pressure loss ratio, performance evaluation criterion, and local Nusselt number have been presented. Moreover, the distribution of the static temperature contour has been presented. In the flow with lower Reynolds numbers, the Nusselt number is not changed significantly; however, in flow with Reynolds number of 7500, the Nusselt number is increased. The performance evaluation criterion has the highest value in nanofluid flow with the volume fraction of 3%, indicating the effects of heat transfer with pressure drop caused by nanoparticles, and from engineering and economic perspectives, using nanoparticles in the wavy microchannel is recommended.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Abbreviations

C p :

Specific heat (J kg−1 K−1)

D h :

Hydraulic diameter (m)

f :

Friction factor

k :

Thermal conductivity of coolant (W m−1 K−1)

P :

Pressure (Pa)

q″:

Heat flux (Wm−2)

T :

Temperature (K)

\(\vec{V}_{m}\) :

Mass-averaged velocity (ms−1)

V dr,k :

Drift velocity for the secondary phase

x, y, z :

Coordinates (m)

\(\mu_{\text{m}}\) :

Viscosity of the mixture (Pa s)

\(\rho_{\text{m}}\) :

Mixture density (kg m−3)

\(\alpha_{\text{k}}\) :

Volume fraction of phase k

Ave:

Average

f:

Fluid phase

In:

Inlet

Nf:

Nanofluid

Out:

Outlet

S:

Solid phase

References

  1. 1.

    Marshall SD, Arayanarakool R, Balasubramaniam L, Li B, Lee PS & Chen PCY. Heat exchanger improvement via curved, angular and wavy microfluidic channels: A comparison of numerical and experimental results. In: 16th IEEE intersociety conference on thermal and thermomechanical phenomena in electronic systems (ITherm); 2017.

  2. 2.

    Huang H, Wu H, Zhang C. an experimental study on flow friction and heat transfer of water in sinusoidal wavy silicon microchannels. J Micromech Microeng. 2018;28:055003.

    Article  CAS  Google Scholar 

  3. 3.

    Barzegarian R, Moraveji MK, Aloueyan A. Experimental investigation on heat transfer characteristics and pressure drop of BPHE (brazed plate heat exchanger) using TiO2–water nanofluid. Exp Thermal Fluid Sci. 2016;74:11–8.

    CAS  Article  Google Scholar 

  4. 4.

    Barzegarian R, Aloueyan A, Yousefi T. Thermal performance augmentation using water based Al2O3-gamma nanofluid in a horizontal shell and tube heat exchanger under forced circulation. Int. Commun Heat Mass Transf. 2017;86:52–9.

    CAS  Article  Google Scholar 

  5. 5.

    Wen D, Ding Y. Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. Int J Heat Mass Transf. 2004;47:5181–8.

    CAS  Article  Google Scholar 

  6. 6.

    Gholami MR, Akbari OA, Marzban A, Toghraie D, Ahmadi Sheikh Shabani GHR, Zarringhalam M. The effect of rib shape on the behavior of laminar flow of oil/MWCNT nanofluid in a rectangular microchannel. J Therm Anal Calorim. 2018;134(3):1611–28. https://doi.org/10.1007/s10973-017-6902-3.

    CAS  Article  Google Scholar 

  7. 7.

    Kirsch KL, Thole KA. Experimental investigation of numerically optimized wavy microchannels created through additive manufacturing. Turbomachinery. 2017;140(2):021002.

    Article  Google Scholar 

  8. 8.

    Arabpour A, Karimipour A, Toghraie D, Akbari OA. Investigation into the effects of slip boundary condition on nanofluid flow in a double-layer microchannel. J Therm Anal Calorim. 2018;131(3):2975–91. https://doi.org/10.1007/s10973-017-6813-3.

    CAS  Article  Google Scholar 

  9. 9.

    Hosseinnezhad R, Akbari OA, Hassanzadeh Afrouzi H, Biglarian M, Koveiti A, Toghraie D. The numerical study of heat transfer of turbulent nanofluid flow in a tubular heat exchanger with twin twisted-tapes inserts. J Therm Anal Calorim. 2018;132(1):741–59. https://doi.org/10.1007/s10973-017-6900-5.

    CAS  Article  Google Scholar 

  10. 10.

    Ji W, Ming LJ. Theoretical and experimental study of wavy flow during R134a condensation flow in symmetrically and asymmetrically cooled microchannels. Int J Multiph Flow. 2018;101:125–36.

    Article  CAS  Google Scholar 

  11. 11.

    Foo ZH, Cheng KX, Goh AL, Ooi KT. Single-phase convective heat transfer performance of wavy microchannels in macro geometry. Appl Therm Eng. 2018;141:675–87.

    Article  Google Scholar 

  12. 12.

    Aghahadi MH, Niknejadi M, Toghraie D. An experimental study on the rheological behavior of hybrid Tungsten oxide (WO3)-MWCNTs/engine oil Newtonian nanofluids. J Mol Struct. 2019;1197:497–507.

    Google Scholar 

  13. 13.

    Ahmed MA, Shuaib NH, Yusoff MZ. Numerical investigations on the heat transfer enhancement in a wavy channel using nanofluid. Int J Heat Mass Transf. 2012;55(21–22):5891–8.

    CAS  Article  Google Scholar 

  14. 14.

    Keshavarz Moraveji M, Barzegarian R, Bahiraei M, Barzegarian M, Aloueyan A, Wongwises S. Numerical evaluation on thermal–hydraulic characteristics of dilute heat-dissipating nanofluids flow in microchannels. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7181-3.

    Article  Google Scholar 

  15. 15.

    Esfahani NN, Toghraie D, Afrand M. A new correlation for predicting the thermal conductivity of ZnO–Ag (50%–50%)/water hybrid nanofluid: an experimental study. Powder Technol. 2018;323:367–73.

    CAS  Article  Google Scholar 

  16. 16.

    Asadi A, Pourfattah F. Heat transfer performance of two oil-based nanofluids containing ZnO and MgO nanoparticles; a comparative experimental investigation. Powder Technol. 2019;343:296–308.

    CAS  Article  Google Scholar 

  17. 17.

    Rahmati AR, Akbari OA, Ali Marzban, Toghraie D, Karimi R, Pourfattah F. Simultaneous investigations the effects of non-Newtonian nanofluid flow in different volume fractions of solid nanoparticles with slip and no-slip boundary conditions. Therm. Sci. Eng. Prog. 2018;5:263–277.

    Article  Google Scholar 

  18. 18.

    Afshari A, Akbari M, Toghraie D, Yazdi ME. Experimental investigation of rheological behavior of the hybrid nanofluid of MWCNT–alumina/water (80%)–ethylene-glycol (20%). J Therm Anal Calorim. 2018;132(2):1001–15.

    CAS  Article  Google Scholar 

  19. 19.

    Khodabandeh E, Bahiraei M, Mashayekhi R. Talebjedi B, Toghraie D. Thermal performance of Ag–water nanofluid in tube equipped with novel conical strip inserts using two-phase method: geometry effects and particle migration considerations. Powder Technol. 2018;338:87–100.

    CAS  Article  Google Scholar 

  20. 20.

    Rezaei O, Akbari OA, Marzban A, Toghraie D, Pourfattah F, Mashayekhi R. The numerical investigation of heat transfer and pressure drop of turbulent flow in a triangular microchannel. Physica E. 2017;93:179–89.

    CAS  Article  Google Scholar 

  21. 21.

    Akhgar A, Toghraie D. An experimental study on the stability and thermal conductivity of water-ethylene glycol/TiO2-MWCNTs hybrid nanofluid: developing a new correlation. Powder Technol. 2018;338:806–18.

    CAS  Article  Google Scholar 

  22. 22.

    Mashayekhi R, Khodabandeh E, Akbari OA, Toghraie D, Bahiraei M, Gholami M. CFD analysis of thermal and hydrodynamic characteristics of hybrid nanofluid in a new designed sinusoidal double-layered microchannel heat sink. J Therm Anal Calorim. 2018;134(3):2305–15.

    CAS  Article  Google Scholar 

  23. 23.

    Wen D, Ding Y. Experimental investigation into the pool boiling heat transfer of aqueous based alumina nanofluids. J. Nanoparticle Res. 2005;7:265–74.

    CAS  Article  Google Scholar 

  24. 24.

    Kim D, Kwon Y, Cho Y, Li C, Cheong S, Hwang Y, Lee J, Hong D, Moon S. Convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions. Curr Appl Phys. 2009;9(2):119–23.

    Article  Google Scholar 

  25. 25.

    Akbari OA, Karimipour A, Toghraie D, Safaei MR, Alipour Goodarzi MH, Dahari M. Investigation of rib’s height effect on heat transfer and flow parameters of laminar water–Al2O3 nanofluid in a two dimensional rib-microchannel. Appl Math Comput. 2016;290:135–53.

    Google Scholar 

  26. 26.

    Karimipour A, Alipour H, Akbari OA, Semiromi DT, Esfe MH. Studying the effect of indentation on flow parameters and slow heat transfer of water–silver nano-fluid with varying volume fraction in a rectangular two-dimensional micro channel. Ind J Sci Technol. 2016;8:2015.

    Google Scholar 

  27. 27.

    Safaei MR, Gooarzi M, Akbari OA, Safdari Shadloo M, Dahari M. Performance evaluation of nanofluids in an inclined ribbed microchannel for electronic cooling applications. Electron Cool. 2016. https://doi.org/10.5772/62898.

    Article  Google Scholar 

  28. 28.

    Alipour H, Karimipour A, Safaei MR, Semiromi DT, Akbari OA. Influence of T-semi attached rib on turbulent flow and heat transfer parameters of a silver–water nanofluid with different volume fractions in a three-dimensional trapezoidal microchannel. Physica E. 2016;88:60–76.

    Article  CAS  Google Scholar 

  29. 29.

    Sakanova A, Keian CC, Zhao J. Performance improvements of microchannel heat sink using wavy channel and nanofluids. Int J Heat Mass Transf. 2015;89:59–74.

    CAS  Article  Google Scholar 

  30. 30.

    Rimbault B, Nguyen CT, Galanis N. Experimental investigation of CuO–water nanofluid flow and heat transfer inside a microchannel heat sink. Int J Therm Sci. 2014;84:275–92.

    CAS  Article  Google Scholar 

  31. 31.

    Ramgadia AG, Saha AK. Fully developed floe and heat transfer characteristics in a wavy passage: effect of amplitude of waviness and Reynolds number. Int J Heat Mass Transf. 2012;55:2494–509.

    Article  Google Scholar 

  32. 32.

    Mohamed N, Wided BR, Mohamed EM, Karim MA, Mohamed B. Numerical investigation on the fluid flow and heat transfer in the entrance region of wavy channel. Energy Proc. 2013;36:76–85.

    CAS  Article  Google Scholar 

  33. 33.

    Sui Y, Teo CJ. Fluid flow and heat transfer in wavy microchannels. Int J Heat Mass Transf. 2010;53:2760–72.

    CAS  Article  Google Scholar 

  34. 34.

    Mital M. Analytical analysis of heat transfer and pumping power of laminar nanofluid developing flow in microchannels. Appl Therm Eng. 2013;50(1):429–36.

    CAS  Article  Google Scholar 

  35. 35.

    Rostami J, Abbassi A. Optimization of conjugate heat transfer in wavy walls microchannels. Appl Therm Eng. 2015;82:318–28.

    CAS  Article  Google Scholar 

  36. 36.

    Dai Z, Zheng Z, Fletcher DF. Experimental study of transient behavior of laminar flow in zigzag semi-circular microchannels. Exp Therm Fluid Sci. 2015;68:644–51.

    Article  Google Scholar 

  37. 37.

    Rush TA, Newell TA, Jacobi AM. An experimental study of flow and heat transfer in sinusoidal wavy passages. Int J Heat Mass Transf. 1999;5(42):1541–53.

    Article  Google Scholar 

  38. 38.

    Ngo TL, Kato Y, Nikitin K, Ishizuka T. Heat transfer and pressure drop correlations of microchannel heat exchangers with S-shaped and zigzag fins for carbon dioxide cycles. Exp Therm Fluid Sci. 2007;6(32):560–70.

    Article  CAS  Google Scholar 

  39. 39.

    Heidary H, Kermani MJ. Effect of nano-particles on forced convection in sinusoidal-wall channel. Int Commun Heat Mass Transf. 2010;37:1520–7.

    CAS  Article  Google Scholar 

  40. 40.

    Castelloes FV, Quaresma JNN, Renato MC. Convective heat transfer enhancement in low Reynolds number flows with wavy walls. Heat Mass Transf. 2010;53:2022–34.

    CAS  Article  Google Scholar 

  41. 41.

    Ghaffari O, Behzadmehr A, Ajam H. Turbulent mixed convection of a nanofluid in a horizontal curved tube using a two-phase approach. Int Commun Heat Mass Transf. 2010;37:1551–8.

    CAS  Article  Google Scholar 

  42. 42.

    Vahidinia F, Rahmdel M. Turbulent mixed convection of a nanofluid in a horizontal circular tube with non-uniform wall heat flux using a two-phase approach. Trans Phenom Nano Micro Scales. 2015;3(2):106–17.

    Google Scholar 

  43. 43.

    Manninen M, Taivassalo V, Kallio S. On the mixture model for multiphase flow. In: Technical Research Center of Finland, vol 288. VTT Publications; 1996. pp. 9–18.

  44. 44.

    Schiller L, Naumann A. A drag coefficient correlation. Z Ver Deutsch Ing. 1935;77:318–20.

    Google Scholar 

  45. 45.

    Alikhani S, Behzadmehr A, Saffar-Avval M. Numerical study of nanofluid mixed convection in a horizontal curved tube using two-phase approach. Heat Mass Transf. 2011;47:107–18.

    CAS  Article  Google Scholar 

  46. 46.

    Launder BE, Spalding DB. Lectures in mathematical models of turbulence. London: Academic Press; 1972.

    Google Scholar 

  47. 47.

    Rahimi-Esbo M, Ranjbar AA, Ramiar A, Aria A, Rahgoshay M. Numerical study of turbulent forced convection jet flow in a converging sinusoidal channel. Int J Therm Sci. 2012;59:176–85.

    Article  Google Scholar 

  48. 48.

    Chon CH, Kihm KD, Lee SP, Choi SUS. Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. J Appl Phys. 2005;87:153107.

    Google Scholar 

  49. 49.

    Maïga SEB, Nguyen CT, Galanis N, Roy G. Heat transfer behaviours of nanofluids in a uniformly heated tube. Superlattices Microstruct. 2004;35:543–57.

    Article  CAS  Google Scholar 

  50. 50.

    Buongiorno J. Convective transport in nanofluids. ASME J Heat Transf. 2006;128:240–50.

    Article  Google Scholar 

  51. 51.

    Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf. 1998;11:151–70.

    CAS  Article  Google Scholar 

  52. 52.

    Akbari OA, Hassanzadeh Afrouzi H, Marzban A, Toghraie D, Malekzade H, Arabpour A. Investigation of volume fraction of nanoparticles effect and aspect ratio of the twisted tape in the tube. J Therm Anal Calorim. 2017;129(3):1911–22. https://doi.org/10.1007/s10973-017-6372-7.

    CAS  Article  Google Scholar 

  53. 53.

    Sarlak R, Yousefzadeh S, Akbari OA, Toghraie D, Sarlak S. The investigation of simultaneous heat transfer of water/Al2O3 nanofluid in a close enclosure by applying homogeneous magnetic field. Int J Mech Sci. 2017;133:674–88.

    Article  Google Scholar 

  54. 54.

    Pourfattah F, Motamedian M, Sheikhzadeh Gh, Toghraie D, Akbari OA. The numerical investigation of angle of attack of inclined rectangular rib on the turbulent heat transfer of water–Al2O3 nanofluid in a tube. Int J Mech Sci. 2017;131–132:1106–16.

    Article  Google Scholar 

  55. 55.

    Uddin MJ, Rahman MM. Numerical computation of natural convective heat transport within nanofluids filled semi-circular shaped enclosure using nonhomogeneous dynamic model. Therm Sci Eng Prog. 2017. https://doi.org/10.1016/j.tsep.2017.02.001.

    Article  Google Scholar 

  56. 56.

    Arabpour A, Karimipour A, Toghraie D. The study of heat transfer and laminar flow of kerosene/multi-walled carbon nanotubes (MWCNTs) nanofluid in the microchannel heat sink with slip boundary condition. J Therm Anal Calorim. 2018;131(2):1553–66.

    CAS  Article  Google Scholar 

  57. 57.

    Parsaiemehr M, Pourfattah F, Akbari OA, Toghraie D, Sheikhzadeh G. Turbulent flow and heat transfer of water/Al2O3 nanofluid inside a rectangular ribbed channel. Physica E. 2018;96:73–84.

    CAS  Article  Google Scholar 

  58. 58.

    Sui Y, Lee PS, Teo CJ. An experimental study of flow friction and heat transfer in wavy microchannels with rectangular cross section. Int J Therm Sci. 2011;50(12):2473–82.

    Article  Google Scholar 

  59. 59.

    Toghraie D, Davood Abdollah MM, Pourfattah F, Akbari OA, Ruhani B. Numerical investigation of flow and heat transfer characteristics in smooth. Sinusoidal and zigzag-shaped microchannel with and without nanofluid. J Therm Anal Calorim. 2018;131:1757–66.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Amin Asadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bazdar, H., Toghraie, D., Pourfattah, F. et al. Numerical investigation of turbulent flow and heat transfer of nanofluid inside a wavy microchannel with different wavelengths. J Therm Anal Calorim 139, 2365–2380 (2020). https://doi.org/10.1007/s10973-019-08637-3

Download citation

Keywords

  • Wavy microchannel
  • Nanofluid
  • Turbulent flow
  • Computational fluids dynamics
  • Thermal–hydraulic performance