Skip to main content
Log in

An experimental study on hydraulic and thermal performances of hybrid nanofluids in mini-channel

A new correlation for viscosity of hybrid nanofluids

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the present work, the thermo-physical properties and hydraulic and thermal performances of alumina/water, silica/water, and alumina–silica/water nanofluids were experimentally investigated. The thermal conductivity and dynamic viscosity of nanofluids were measured for the volume fractions in the range of 0–2% and the temperature in the range of 10–40 °C. Some new correlations were proposed for the hybrid nanofluid. Single and hybrid nanofluids at the volume fractions of 0.05%, 0.1%, and 0.2% and the Reynolds number in the range of 490–3100 were tested in a mini-channel. Measurements of the thermo-physical properties indicated that the hybrid nanofluid provided larger values of the thermal conductivity and viscosity in comparison with the single ones. The results also showed that the Nusselt number increased with increasing the Reynolds number and volume fraction of the nanoparticles for all nanofluids. Hybrid nanofluid with 75% alumina–25% silica and volume fraction of 0.2% and the single alumina nanofluid with volume fraction of 0.2% provided the highest and the lowest increments in the Nusselt number with the mean increment values of 46% and 11%, respectively. The hydraulic performance assessment revealed that adding nanoparticles to the base fluid increased the friction factor in the mini-channel from 10.4 to 65.2% based on the values of the volume fraction. However, the thermal performance evaluation criteria are always above the unity regardless the type of the nanofluid and among the nanofluids considered in this study, and the maximum performance evaluation criterion was recorded for the hybrid nanofluid with the value of 1.23 at volume fraction of 0.2%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

\(A_{\text{t}}\) :

Total heat transfer area \(\left( {{\text{m}}^{2} } \right)\)

\(A_{\text{c}}\) :

Mini-channel cross section \(\left( {{\text{m}}^{2} } \right)\)

\(c_{p}\) :

Specific heat capacity \(\left( {{\text{J}}\,{\text{kg}}^{ - 1} \,{\text{K}}^{ - 1} } \right)\)

\(D_{\text{h}}\) :

Hydraulic diameter \(\left( {\text{m}} \right)\)

\(h\) :

Convective heat transfer coefficient \(\left( {{\text{w}}\,{\text{m}}^{ - 2} \,{\text{K}}^{ - 1} } \right)\)

\(H_{\text{ch}}\) :

Channel height \(\left( {\text{m}} \right)\)

\(k\) :

Thermal conductivity \(\left( {{\text{w}}\,{\text{m}}^{ - 1} \,{\text{K}}^{ - 1} } \right)\)

\(L_{\text{ch}}\) :

Channel length \(\left( {\text{m}} \right)\)

\(\dot{m}\) :

Mass flow rate \(\left( {{\text{kg}}\,{\text{m}}^{ - 3} } \right)\)

\(p\) :

Wetted perimeter \(\left( {\text{m}} \right)\)

\(P\) :

Pressure \(\left( {\text{Pa}} \right)\)

\(Q_{\text{conv}}\) :

Heat transfer rate \(\left( {\text{w}} \right)\)

\(T\) :

Temperature \(\left( {\text{K}} \right)\)

\(T_{\text{wi}}\) :

Wall temperature \(\left( {\text{K}} \right)\)

\(u\) :

Velocity \(\left( {{\text{m}}\,{\text{s}}^{ - 1} } \right)\)

\(W_{\text{ch}}\) :

Channel width \(\left( {\text{m}} \right)\)

\({\text{avg}}\) :

Average

\({\text{bf}}\) :

Base fluid

\({\text{ch}}\) :

Channel

\({\text{conv}}\) :

Convection

\({\text{f}}\) :

Fluid

\({\text{nf}}\) :

Nanofluid

\({\text{h,nf}}\) :

Hybrid nanofluid

\({\text{p}}\) :

Particle

\({\text{in}}\) :

Inlet

\({\text{out}}\) :

Outlet

\({\text{rel}}\) :

Relative

\(\mu\) :

Dynamic viscosity \(\left( {{\text{kg}}\,{\text{m}}^{ - 1} \,{\text{s}}^{ - 1} } \right)\)

\(\rho\) :

Density \(\left( {{\text{kg}}\,{\text{m}}^{ - 3} } \right)\)

\(\varphi\) :

Nanoparticle volume concentration

References

  1. Maxwell JC. A treatise on electricity and magnetism. Oxford: Clarendon Press; 1881.

    Google Scholar 

  2. Choi SU. Enhancing conductivity of fluids with nanoparticles. ASME Fluid Eng Div. 1995;231:99–105.

    CAS  Google Scholar 

  3. Nguyen CT, Desgranges F, Galanis N, Roy G, Maré T, Boucher S, Mintsa HA. Viscosity data for Al2O3–water nanofluid—hysteresis: is heat transfer enhancement using nanofluids reliable? Int J Therm Sci. 2008;47(2):103–11.

    CAS  Google Scholar 

  4. Chandrasekar M, Suresh S, Bose AC. Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid. Exp Thermal Fluid Sci. 2010;34(2):210–6.

    CAS  Google Scholar 

  5. Tavman I, Turgut A, Chirtoc M, Hadjov K, Fudym O, Tavman S. Experimental study on thermal conductivity and viscosity of water-based nanofluids. Heat Transf Res. 2010;41(3):209–21.

    Google Scholar 

  6. Said Z, Sajid MH, Alim MA, Saidur R, Rahim NA. Experimental investigation of the thermophysical properties of AL2O3-nanofluid and its effect on a flat plate solar collector. Int Commun Heat Mass Transf. 2013;1(48):99–107.

    Google Scholar 

  7. Arya A, Shahmiry S, Nikkhah V, Sarafraz MM. Cooling of high heat flux flat surface with nanofluid assisted convective loop: experimental assessment. Arch Mech Eng. 2017;64(4):519–31.

    Google Scholar 

  8. Salari E, Peyghambarzadeh SM, Sarafraz MM, Hormozi F, Nikkhah V. Thermal behavior of aqueous iron oxide nano-fluid as a coolant on a flat disc heater under the pool boiling condition. Heat Mass Transf. 2017;53(1):265–75.

    CAS  Google Scholar 

  9. Sarafraz MM, Arjomandi M. Demonstration of plausible application of gallium nano-suspension in microchannel solar thermal receiver: experimental assessment of thermo-hydraulic performance of microchannel. Int Commun Heat Mass Transf. 2018;31(94):39–46.

    Google Scholar 

  10. Sarafraz MM, Arjomandi M. Thermal performance analysis of a microchannel heat sink cooling with Copper Oxide-Indium (CuO/In) nano-suspensions at high-temperatures. Appl Therm Eng. 2018;5(137):700–9.

    Google Scholar 

  11. Sarafraz MM, Arya A, Nikkhah V, Hormozi F. Thermal performance and viscosity of biologically produced silver/coconut oil nanofluids. Chem Biochem Eng Q. 2017;30(4):489–500.

    Google Scholar 

  12. Sarafraz MM, Arya H, Arjomandi M. Thermal and hydraulic analysis of a rectangular microchannel with gallium-copper oxide nano-suspension. J Mol Liq. 2018;1(263):382–9.

    Google Scholar 

  13. Hussein AM, Bakar RA, Kadirgama K, Sharma KV. Experimental measurement of nanofluids thermal properties. Int J Automot Mech Eng. 2013;7:850.

    CAS  Google Scholar 

  14. Esfe MH, Karimipour A, Yan WM, Akbari M, Safaei MR, Dahari M. Experimental study on thermal conductivity of ethylene glycol based nanofluids containing Al2O3 nanoparticles. Int J Heat Mass Transf. 2015;1(88):728–34.

    Google Scholar 

  15. Usri NA, Azmi WH, Mamat R, Hamid KA, Najafi G. Thermal conductivity enhancement of Al2O3 nanofluid in ethylene glycol and water mixture. Energy Procedia. 2015;1(79):397–402.

    Google Scholar 

  16. Sharma AK, Tiwari AK, Dixit AR. Characterization of TiO2, Al2O3 and SiO2 nanoparticle based cutting fluids. Mater Today Proc. 2016;3(6):1890–8.

    Google Scholar 

  17. Sarbazi Z, Hormozi F. Optimization of thermal and hydraulic performance of nanofluids in a rectangular miniature-channel with various fins using response surface methodology. J Therm Anal Calorim. 2019;137(3):711–33.

    CAS  Google Scholar 

  18. Hosseinirad E, Hormozi F. New correlations to predict the thermal and hydraulic performance of different longitudinal pin fins as vortex generator in miniature channel: Utilizing MWCNT-water and Al2O3-water nanofluids. Appl Therm Eng. 2017;25(118):199–213.

    Google Scholar 

  19. Hosseinirad E, Hormozi F. Performance intensification of miniature channel using wavy vortex generator and optimization by response surface methodology: MWCNT-H2O and Al2O3-H2O nanofluids as coolant fluids. Chem Eng Process Process Intensif. 2018;1(124):83–96.

    Google Scholar 

  20. Azmi WH, Sharma KV, Sarma PK, Mamat R, Anuar S, Rao VD. Experimental determination of turbulent forced convection heat transfer and friction factor with SiO2 nanofluid. Exp Thermal Fluid Sci. 2013;1(51):103–11.

    Google Scholar 

  21. Miry SZ, Roshani M, Hanafizadeh P, Ashjaee M, Amini F. Heat transfer and hydrodynamic performance analysis of a miniature tangential heat sink using Al2O3–H2O and TiO2–H2O Nanofluids. Exp Heat Transf. 2016;29(4):536–60.

    CAS  Google Scholar 

  22. Raei B, Shahraki F, Jamialahmadi M, Peyghambarzadeh SM. Experimental study on the heat transfer and flow properties of γ-Al2O3/water nanofluid in a double-tube heat exchanger. J Therm Anal Calorim. 2017;127(3):2561–75.

    CAS  Google Scholar 

  23. Dabiri E, Bahrami F, Mohammadzadeh S. Experimental investigation on turbulent convection heat transfer of SiC/W and MgO/W nanofluids in a circular tube under constant heat flux boundary condition. J Therm Anal Calorim. 2018;131(3):2243–59.

    CAS  Google Scholar 

  24. Kim S, Tserengombo B, Choi SH, Noh J, Huh S, Choi B, Chung H, Kim J, Jeong H. Experimental investigation of heat transfer coefficient with Al2O3 nanofluid in small diameter tubes. Appl Therm Eng. 2019;5(146):346–55.

    Google Scholar 

  25. Hassan M, Ellahi R, Bhatti MM, Zeeshan A. A comparative study on magnetic and non-magnetic particles in nanofluid propagating over a wedge. Can J Phys. 2018;97(3):277–85.

    Google Scholar 

  26. Hassan M, Marin M, Alsharif A, Ellahi R. Convective heat transfer flow of nanofluid in a porous medium over wavy surface. Phys Lett A. 2018;382(38):2749–53.

    CAS  Google Scholar 

  27. Khan LA, Raza M, Mir NA, Ellahi R. Effects of different shapes of nanoparticles on peristaltic flow of MHD nanofluids filled in an asymmetric channel. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08348-9.

    Article  Google Scholar 

  28. Kumar N, Sonawane SS, Sonawane SH. Experimental study of thermal conductivity, heat transfer and friction factor of Al2O3 based nanofluid. Int Commun Heat Mass Transf. 2018;1(90):1.

    Google Scholar 

  29. Manay E, Mandev E. Experimental investigation of mixed convection heat transfer of nanofluids in a circular microchannel with different inclination angles. J Therm Anal Calorim. 2019;135(2):887–900.

    CAS  Google Scholar 

  30. Topuz A, Engin T, Özalp AA, Erdoğan B, Mert S, Yeter A. Experimental investigation of optimum thermal performance and pressure drop of water-based Al2O3, TiO2 and ZnO nanofluids flowing inside a circular microchannel. J Therm Anal Calorim. 2018;131(3):2843–63.

    CAS  Google Scholar 

  31. Sarkar J, Ghosh P, Adil A. A review on hybrid nanofluids: recent research, development and applications. Renew Sustain Energy Rev. 2015;1(43):164–77.

    Google Scholar 

  32. Chen LF, Cheng M, Yang DJ, Yang L. Enhanced thermal conductivity of nanofluid by synergistic effect of multi-walled carbon nanotubes and Fe2O3 nanoparticles. Appl Mech Mater. 2014;548:118–123.

    Google Scholar 

  33. Esfe MH, Arani AA, Rezaie M, Yan WM, Karimipour A. Experimental determination of thermal conductivity and dynamic viscosity of Ag–MgO/water hybrid nanofluid. Int Commun Heat Mass Transf. 2015;1(66):189–95.

    Google Scholar 

  34. Hamilton RL, Crosser OK. Thermal conductivity of heterogeneous two component systems. I EC Fundam. 1962;1(3):187–91.

    CAS  Google Scholar 

  35. Maıga SEB, Palm SJ, Nguyen CT, Roy G, Galanis N. Heat transfer enhancement by using nanofluids in forced convection flows. Int J Heat Fluid Flow. 2005;26:530–46.

    Google Scholar 

  36. Moldoveanu GM, Ibanescu C, Danu M, Minea AA. Viscosity estimation of Al2O3, SiO2 nanofluids and their hybrid: an experimental study. J Mol Liq. 2018;1(253):188–96.

    Google Scholar 

  37. Rejvani M, Saedodin S, Vahedi SM, Wongwises S, Chamkha AJ. Experimental investigation of hybrid nano-lubricant for rheological and thermal engineering applications. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08225-5.

    Article  Google Scholar 

  38. Suresh S, Venkitaraj KP, Selvakumar P, Chandrasekar M. Synthesis of Al2O3–Cu/water hybrid nanofluids using two step method and its thermo physical properties. Colloids Surf A. 2011;388(1–3):41–8.

    CAS  Google Scholar 

  39. Madhesh D, Parameshwaran R, Kalaiselvam S. Experimental investigation on convective heat transfer and rheological characteristics of Cu–TiO2 hybrid nanofluids. Exp Thermal Fluid Sci. 2014;1(52):104–15.

    Google Scholar 

  40. Sundar LS, Singh MK, Sousa AC. Enhanced heat transfer and friction factor of MWCNT–Fe3O4/water hybrid nanofluids. Int Commun Heat Mass Transf. 2014;1(52):73–83.

    Google Scholar 

  41. Moldoveanu GM, Minea AA, Huminic G, Huminic A. Al2O3/TiO2 hybrid nanofluids thermal conductivity. J Therm Anal Calorim.: 2019;137(2):583–92.

    CAS  Google Scholar 

  42. Parsian A, Akbari M. New experimental correlation for the thermal conductivity of ethylene glycol containing Al2O3–Cu hybrid nanoparticles. J Therm Anal Calorim. 2018;131(2):1605–13.

    CAS  Google Scholar 

  43. Hussein AM. Thermal performance and thermal properties of hybrid nanofluid laminar flow in a double pipe heat exchanger. Exp Thermal Fluid Sci. 2017;1(88):37–45.

    Google Scholar 

  44. Nabil MF, Azmi WH, Hamid KA, Mamat R. Experimental investigation of heat transfer and friction factor of TiO2–SiO2 nanofluids in water: ethylene glycol mixture. Int J Heat Mass Transf. 2018;1(124):1361–9.

    Google Scholar 

  45. Nakhjavani M, Nikkhah V, Sarafraz MM, Shoja S, Sarafraz M. Green synthesis of silver nanoparticles using green tea leaves: experimental study on the morphological, rheological and antibacterial behaviour. Heat Mass Transf. 2017;53(10):3201–9.

    CAS  Google Scholar 

  46. Sarafraz MM, Hormozi F, Kamalgharibi M. Sedimentation and convective boiling heat transfer of CuO-water/ethylene glycol nanofluids. Heat Mass Transf. 2014;50(9):1237–49.

    CAS  Google Scholar 

  47. Sarafraz MM, Hormozi F, Peyghambarzadeh SM, Vaeli N. Upward flow boiling to DI-water and Cuo nanofluids inside the concentric annuli. J Appl Fluid Mech. 2015;8(4):651–9.

    Google Scholar 

  48. Saeedan M, Nazar AR, Abbasi Y, Karimi R. CFD Investigation and neutral network modeling of heat transfer and pressure drop of nanofluids in double pipe helically baffled heat exchanger with a 3-D fined tube. Appl Therm Eng. 2016;5(100):721–9.

    Google Scholar 

  49. Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf Int J. 1998;11(2):151–70.

    CAS  Google Scholar 

  50. Xuan Y, Roetzel W. Conceptions for heat transfer correlation of nanofluids. Int J Heat Mass Transf. 2000;43(19):3701–7.

    CAS  Google Scholar 

  51. Arya H, Sarafraz MM, Arjomandi M. Heat transfer and fluid flow of MgO/ethylene glycol in a corrugated heat exchanger. J Mech Sci Technol. 2018;32(8):3975–82.

    Google Scholar 

  52. Sarafraz MM, Hormozi F, Silakhori M, Peyghambarzadeh SM. On the fouling formation of functionalized and non-functionalized carbon nanotube nano-fluids under pool boiling condition. Appl Therm Eng. 2016;25(95):433–44.

    Google Scholar 

  53. Sarafraz MM, Pourmehran O, Yang B, Arjomandi M. Assessment of the thermal performance of a thermosyphon heat pipe using zirconia-acetone nanofluids. Renew Energy. 2019;1(136):884–95.

    Google Scholar 

  54. Kline SJ. Describing uncertainty in single sample experiments. Mech Eng. 1953;75:3–8.

    Google Scholar 

  55. Harandi SS, Karimipour A, Afrand M, Akbari M, D’Orazio A. An experimental study on thermal conductivity of F-MWCNTs–Fe3O4/EG hybrid nanofluid: effects of temperature and concentration. Int Commun Heat Mass Transf. 2016;1(76):171–7.

    Google Scholar 

  56. Chiam HW, Azmi WH, Usri NA, Mamat R, Adam NM. Thermal conductivity and viscosity of Al2O3 nanofluids for different based ratio of water and ethylene glycol mixture. Exp Thermal Fluid Sci. 2017;1(81):420–9.

    Google Scholar 

  57. Rudyak VY. Viscosity of nanofluids. Why it is not described by the classical theories. Adv Nanopart. 2013;2(03):266.

    Google Scholar 

  58. Afrand M, Najafabadi KN, Akbari M. Effects of temperature and solid volume fraction on viscosity of SiO2-MWCNTs/SAE40 hybrid nanofluid as a coolant and lubricant in heat engines. Appl Therm Eng. 2016;5(102):45–54.

    Google Scholar 

  59. Brinkman HC. The viscosity of concentrated suspensions and solutions. J Chem Phys. 1952;20(4):571.

    CAS  Google Scholar 

  60. Kim D, Kwon Y, Cho Y, Li C, Cheong S, Hwang Y, Lee J, Hong D, Moon S. Convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions. Curr Appl Phys. 2009;9(2):e119–23.

    Google Scholar 

  61. Raja M, Vijayan R, Dineshkumar P, Venkatesan M. Review on nanofluids characterization, heat transfer characteristics and applications. Renew Sustain Energy Rev. 2016;1(64):163–73.

    Google Scholar 

Download references

Acknowledgements

The authors of this work gratefully acknowledge the partial financial supports by department of Chemical, Petroleum, and Gas Engineering, Semnan University, Semnan, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faramarz Hormozi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashemzadeh, S., Hormozi, F. An experimental study on hydraulic and thermal performances of hybrid nanofluids in mini-channel. J Therm Anal Calorim 140, 891–903 (2020). https://doi.org/10.1007/s10973-019-08626-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08626-6

Keywords

Navigation