Skip to main content
Log in

Attainment and characterization of carboxymethyl chitosan hydrogels by enzymatic cross-linking

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, carboxymethyl chitosan hydrogels (CMCH) cross-linked with catechin in the presence of laccase (CMCH-C-L) were obtained. The synthesis and characterization of CMCH were carried out from chitosan (CH) and its cross-linking with catechin (C) in the presence of laccase (L). DSC, ATR-FTIR, and rheological analyses of the CMCH solution and CMCH-C-L hydrogel were carried out. Three main thermal events were observed in the DSC characterization with temperatures and enthalpies related to each event for CMCH: 167.2 °C/+ 523.3 J g−1, 269.1 °C/− 35.0 J g−1, and 333.3 °C/− 17.6 J g−1, possibly referring to these processes: polymerization, breaking of electrostatic interactions, and decomposition of the material, respectively. The CMCH-C-L hydrogel presented values of 165.2 °C/+ 376.6 J g−1, 266.7 °C/− 47.8 J g−1, and 333.3 °C/− 31.5 J g−1. Conversely, the chitosan presented only one thermal event of decomposition at 302.5 °C and enthalpy of − 258.5 J g−1. Rheological properties of the hydrogels (viscosities, consistency values, and flow indices) showed non-Newtonian pseudoplastic rheological behavior and that the viscosity increased approximately 150% after the reaction (134.25 mPa s for CMCH and 342.85 mPa s in CMCH-C-L) confirming the formation of cross-links after the addition of catechin and laccase. Morphological analyses of CMCH and CMCH-C-L films via SEM showed the modification of the material after the reaction with the catechin in the presence of laccase and corroborated with the results, confirming the presence of cross-links.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Porto Neto AN, Cruz CFS, Serafini MR, Menezes PP, Carvalho YMBG, Matos CRS, Nunes PS, Cardoso JC, Albuquerque Júnior RLC, Rolim Neto PJ, Silva FA, Araújo AAS. Usnic acid-incorporated alginate and gelatin sponges prepared by freeze-drying for biomedical applications. J Therm Anal Calorim. 2017;127:1707–13.

    Article  CAS  Google Scholar 

  2. Abdel-Zaher NA, Moselhey MTH, Guirguis OW. Effect of fast neutrons on the structure and thermal properties of PVA/HPMC blends. J Therm Anal Calorim. 2016;126:1289–99.

    Article  CAS  Google Scholar 

  3. Bersanetti PA, Escobar VH, Nogueira RF, Ortega FS, Schor P, Morandim-Giannetti AA. Enzymatically obtaining hydrogels of PVA crosslinked with ferulic acid in the presence of laccase for biomedical applications. Eur Polym J. 2019;112:610–8.

    Article  CAS  Google Scholar 

  4. Lv X, Liu Y, Song S, Tong C, Shi X, Zhao Y, Zhang J, Hou M. Influence of chitosan oligosaccharide on the gelling and wound healing properties of injectable hydrogels based on carboxymethyl chitosan/alginate polyelectrolyte complexes. Carbohydr Polym. 2019;205:312–21.

    Article  CAS  Google Scholar 

  5. Imperiale JC, Acosta GB, Sosnik A. Polymer-based carriers for ophthalmic drug delivery. J Control Release. 2018;285:106–41.

    Article  CAS  Google Scholar 

  6. Krishnakumar GS, Sampath S, Muthusamy S, John MA. Importance of crosslinking strategies in designing smart biomaterials for bone tissue engineering: a systematic review. Mater Sci Eng C. 2019;96:941–54.

    Article  CAS  Google Scholar 

  7. Fiamingo A, Campana-Filho SP. Structure, morphology and properties of genipin-crosslinked carboxymethylchitosan porous membranes. Carbohydr Polym. 2016;143:155–63.

    Article  CAS  Google Scholar 

  8. Tao Y, Tong X, Zhang Y, Lai J, Huang Y, Jiang YR, Guo BH. Evaluation of an in situ chemically crosslinked hydrogel as a long-term vitreous substitute material. Acta Biomater. 2013;9:5022–30.

    Article  CAS  Google Scholar 

  9. Doshi B, Repo E, Heiskanen JP, Sirviö JA, Sillanpää M. Sodium salt of oleoyl carboxymethyl chitosan: a sustainable adsorbent in the oil spill treatment. J Clean Prod. 2018;170:339–50.

    Article  CAS  Google Scholar 

  10. Morandim-Giannetti AA, Silva RC, Magalhães O Jr, Schor P, Bersanetti PA. Conditions for obtaining polyvinyl alcohol/trisodium trimetaphosphate hydrogels as vitreous humor substitute. J Biomed Mater Res B. 2016;104:1386–95.

    Article  CAS  Google Scholar 

  11. Kurniasih M, Cahyati T, Dewi RS. Carboxymethyl chitosan as an antifungal agent on gauze. Int J Biol Macromol. 2018;119:166–71.

    Article  CAS  Google Scholar 

  12. Morandim-Giannetti AA, Rubio SR, Nogueira RF, Ortega FS, Magalhães Junior O, Schor P, Bersanetti PA. Characterization of PVA/glutaraldehyde hydrogels obtained using Central Composite Rotatable Design (CCRD). J Biomed Mater Res Part B. 2018;106B:1558–66.

    Article  Google Scholar 

  13. De Abreu FR, Campana-Filho SP. Characteristics and properties of carboxymethylchitosan. Carbohydr Polym. 2009;75:214–21.

    Article  Google Scholar 

  14. Bratskaya S, Privar Y, Slobodyuk A, Shashura D, Marinin D, Mironenko A, Zheleznov V, Alexander Pestov A. Cryogels of carboxyalkylchitosans as a universal platform for the fabrication of composite materials. Carbohydr Polym. 2019;209:1–9.

    Article  CAS  Google Scholar 

  15. Lucio D, Zornoza A, Martínez-Ohárriz MC. Influence of chitosan and carboxymethylchitosan on the polymorphism and solubilisation of diflunisal. Int J Pharm. 2014;467:19–26.

    Article  CAS  Google Scholar 

  16. Townsend JM, Beck EC, Gehrke SH, Berkland CJ, Detamore MS. Flow behavior prior to crosslinking: the need for precursor rheology for placement of hydrogels in medical applications and for 3D bioprinting. Prog Polym Sci. 2019;91:126–40.

    Article  CAS  Google Scholar 

  17. Tsui C, Koss K, Churchward MA, Todd KG. Biomaterials and glia: progress on designs to modulate neuroinflammation. Acta Biomater. 2019;83:13–28.

    Article  CAS  Google Scholar 

  18. Yao R, Liu L, Deng S, Xu J. Synthesis and characterization of PEGylated carboxymethylchitosan nanoparticles. Carbohydr Polym. 2011;85:809–16.

    Article  CAS  Google Scholar 

  19. Chirila TV, Hong Y, Dalton PD, Constable IJ, Refojo MF. The use of hydrophilic polymers as artificial vitreous. Prog Polym Sci. 1998;23:475–508.

    Article  CAS  Google Scholar 

  20. Manhivi VE, Amonsou EO, Kudanga T. Laccase-mediated crosslinking of gluten-free amadumbeflour improves rheological properties. Food Chem. 2018;264:157–63.

    Article  CAS  Google Scholar 

  21. Zhang X. Synthesis of novel laccase-biotitania biocatalysts for malachite green decolorization. J Biosci Bioeng. 2018;126:69–77.

    Article  CAS  Google Scholar 

  22. Bao D, Chen M, Wang H, Wang J, Liu C, Sun R. Preparation and characterization of double crosslinked hydrogel films from carboxymethylchitosan and carboxymethylcellulose. Carbohydr Polym. 2014;110:113–20.

    Article  CAS  Google Scholar 

  23. Machado LDB, Bavaresco VP, Pino ES, Zavaglia CAC, Reis MC. TA of PVAL hydrogel cross-linked by chemical and EB irradiation process: used as artificial articular cartilage. J Therm Anal Calorim. 2004;75:445–51.

    Article  CAS  Google Scholar 

  24. Singh B, Kumar A. Network formation of Moringa oleifera gum by radiation induced crosslinking: evaluation of drug delivery, network parameters and biomedical properties. Int J Biol Macromol. 2018;108:477–88.

    Article  CAS  Google Scholar 

  25. Yoshida H, Hatakeyama T, Hatakeyama H. characterization of water in polysaccharide hydrogels by DSC. J Therm Anal Calorim. 1992;40:483–9.

    Article  Google Scholar 

  26. Sharma S, Kumar R, Kumari P, Kharwar RN, Yadav AK, Saripella S. Mechanically magnified chitosan-based hydrogel as tissue adhesive and antimicrobial candidate. Int J Biol Macromol. 2019;125:109–15.

    Article  CAS  Google Scholar 

  27. Ahmad HM, Kamal MS, Al-Harthi MA. Rheological and filtration properties of clay-polymer systems: impact of polymer structure. Appl Clay Sci. 2018;160:226–37.

    Article  CAS  Google Scholar 

  28. Silverstein RM, Webster FX, Kiemle DJ, Bryce DL. Spectrometric identification of organic compounds. 8th ed. New York: Wiley; 2014.

    Google Scholar 

  29. An NT, Thien DT, Dong NT, Dung PL. Water-soluble N-carboxymethylchitosan derivatives: preparation, characteristics and its application. Carbohydr Polym. 2009;75:489–97.

    Article  Google Scholar 

  30. Cardoso AM, Oliveira EG, Coradini K, Bruinsmann FA, Aguirre T, Lorenzoni R, Barcelos RCS, Roversi K, Rossato DR, Pohlmann AR, Guterres SS, Burger ME, Beck RCR. Chitosan hydrogels containing nanoencapsulated phenytoin for cutaneous use: skin permeation/penetration and efficacy in wound healing. Mater Sci Eng C. 2019;96:205–17.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Grant # 2015/19273-2 from the São Paulo Research Foundation (FAPESP). We thank Dr. Nivaldo Boralle and Silvia Helena Santagneli for the NMR measurements and LMA-IQ UNESP-Araraquara-SP, Brazil, for making the high-resolution electronic scanning microscope available.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreia de Araújo Morandim-Giannetti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morandim-Giannetti, A.d., Wecchi, P.d., Silvério, P.d. et al. Attainment and characterization of carboxymethyl chitosan hydrogels by enzymatic cross-linking. J Therm Anal Calorim 138, 3635–3643 (2019). https://doi.org/10.1007/s10973-019-08571-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08571-4

Keywords

Navigation