Skip to main content
Log in

Accurate measurement of the longitudinal thermal conductivity and volumetric heat capacity of single carbon fibers with the 3ω method

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

An experimental setup for 3ω method with a constant current source and two differential amplifiers was built to measure the thermal conductivity and the volumetric heat capacity of single polyacrylonitrile (PAN)-based carbon fiber. In complement to a well-known analytical thermal model, a numerical one was developed that can check the validity of the analytical one and can also take into account the effect of convective heat loss on the measurements. A detailed sensitivity analysis of the unknown parameters was presented that would finally help in the better design of the setup for 3ω method. The tests were performed under vacuum and atmospheric pressure for chromel wire as a reference sample and under vacuum for two types of PAN-based carbon fiber. Detailed measurements were performed displaying the influence of convective loss and the thermal contact resistance between fiber and copper electrodes on the estimation of thermal properties of carbon fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sweeting RD, Liu XL. Measurement of thermal conductivity for fibre-reinforced composites. Compos Part A Appl Sci Manuf. 2004;35:933–8.

    Article  Google Scholar 

  2. Selvakumar M, Ramkumar T, Chandrasekar P. Thermal characterization of titanium–titanium boride composites. J Therm Anal Calorim. 2019;136:419–24. https://doi.org/10.1007/s10973-019-08014-0.

    Article  CAS  Google Scholar 

  3. Manocha LM, Warrier A, Manocha S, Sathiyamoorthy D, Banerjee S. Thermophysical properties of densified pitch based carbon/carbon materials-I. Bidirectional composites. Carbon. 2006;44:488–95.

    Article  CAS  Google Scholar 

  4. Siddiqui MOR, Sun D. Development of experimental setup for measuring the thermal conductivity of textiles. Cloth Text Res J. 2018;36:215–30.

    Article  Google Scholar 

  5. Gallego NC, Edie DD, Ntasin LN, Ervin VJ. Modeling the thermal conductivity of carbon fibers. Carbon. 2000;38:1003–10.

    Article  CAS  Google Scholar 

  6. Craddock JD, Burgess JJ, Edrington SE, Weisenberger MC. Method for direct measurement of on-axis carbon fiber thermal diffusivity using the laser flash technique. J Therm Sci Eng Appl. 2016;9:014502. https://doi.org/10.1115/1.4034853.

    Article  CAS  Google Scholar 

  7. Yamane T, Katayama SI, Todoki M, Hatta I. Thermal diffusivity measurement of single fibers by an ac calorimetric method. J Appl Phys. 1996;80:4358–65.

    Article  CAS  Google Scholar 

  8. Wang JL, Gu M, Zhang X, Song Y. Thermal conductivity measurement of an individual fibre using a T type probe method. J Phys D Appl Phys. 2009;42:105502. https://doi.org/10.1088/0022-3727/42/10/105502

    Article  CAS  Google Scholar 

  9. Pradere C, Batsale JC, Goyhénèche JM, Pailler R, Dilhaire S. Thermal properties of carbon fibers at very high temperature. Carbon. 2009;47:737–43.

    Article  CAS  Google Scholar 

  10. Liu J, Qu W, Xie Y, Zhu B, Wang T, Bai X, et al. Thermal conductivity and annealing effect on structure of lignin-based microscale carbon fibers. Carbon. 2017;121:35–47. https://doi.org/10.1016/j.carbon.2017.05.066.

    Article  CAS  Google Scholar 

  11. Lu L, Yi W, Zhang DL. 3 ω method for specific heat and thermal conductivity measurements. Rev Sci Instrum. 2001;72:2996–3003.

    Article  CAS  Google Scholar 

  12. Tian T, Cole KD. Anisotropic thermal conductivity measurement of carbon-fiber/epoxy composite materials. Int J Heat Mass Transf. 2012;55:6530–7. https://doi.org/10.1016/j.ijheatmasstransfer.2012.06.059.

    Article  CAS  Google Scholar 

  13. Boussatour G, Cresson PY, Genestie B, Joly N, Brun JF, Lasri T. Measurement of the thermal conductivity of flexible biosourced polymers using the 3-omega method. Polym Test. 2018;70:503–10. https://doi.org/10.1016/j.polymertesting.2018.07.026.

    Article  CAS  Google Scholar 

  14. Schiffres SN, Malen JA. Improved 3-omega measurement of thermal conductivity in liquid, gases, and powders using a metal-coated optical fiber. Rev Sci Instrum. 2011;82:064903. https://doi.org/10.1063/1.3593372.

    Article  CAS  PubMed  Google Scholar 

  15. Gauthier S, Giani A, Combette P. Gas thermal conductivity measurement using the three-omega method. Sens Actuators A Phys. 2013;195:50–5. https://doi.org/10.1016/j.sna.2012.12.032.

    Article  CAS  Google Scholar 

  16. Zhao L, Luo Y, Huang X, Zhou X, Hebibul R, Ding J, et al. A novel microsensor for measuring thermal conductivity of fluid based on three omega method. Rev Sci Instrum. 2019;90:015002. https://doi.org/10.1063/1.5053835.

    Article  CAS  PubMed  Google Scholar 

  17. Wang ZL, Tang DW, Zhang WG. Simultaneous measurements of the thermal conductivity, thermal capacity and thermal diffusivity of an individual carbon fibre. J Phys D Appl Phys. 2007;40:4686–90.

    Article  CAS  Google Scholar 

  18. Pradère C, Goyhénèche JM, Batsale JC, Dilhaire S, Pailler R. Thermal diffusivity measurements on a single fiber with microscale diameter at very high temperature. Int J Therm Sci. 2006;45:443–51.

    Article  Google Scholar 

  19. Xing C, Jensen C, Munro T, White B, Ban H, Chirtoc M. Accurate thermal property measurement of fine fibers by the 3-omega technique. Appl Therm Eng. 2014;73:315–22.

    Article  Google Scholar 

  20. Hou J, Wang X, Vellelacheruvu P, Guo J, Liu C, Cheng HM. Thermal characterization of single-wall carbon nanotube bundles using the self-heating 3ω technique. J Appl Phys. 2006;100:124314. https://doi.org/10.1063/1.2402973.

    Article  CAS  Google Scholar 

  21. Kaviany M. Principles of heat transfer. New York: Wiley; 2002.

    Book  Google Scholar 

  22. Boetcher SKS. Natural convection transfer from horizontal cylinders. In: Natural convection from circular cylinders. SpringerBriefs in applied sciences and technology. Cham: Springer. https://doi.org/10.1007/978-3-319-08132-8.

    Book  Google Scholar 

  23. Ediss GA. Effect of vacuum pressure on the thermal loading of the ALMA cryostat. Natl Radio Astron Obs. 2006;554:1–3.

    Google Scholar 

  24. Chapelle E, Garnier B, Bourouga B. Interfacial thermal resistance measurement between metallic wire and polymer in polymer matrix composites. Int J Therm Sci. 2009;48:2221–7. https://doi.org/10.1016/j.ijthermalsci.2009.05.001.

    Article  CAS  Google Scholar 

  25. Milošević ND, Raynaud M, Maglić KD. Estimation of thermal contact resistance between the materials of double-layer sample using the laser flash method. Inverse Probl Eng. 2002;10:85–103.

    Article  Google Scholar 

  26. Sundqvist B. Thermal diffusivity and thermal conductivity of Chromel, Alumel, and Constantan in the range 100–450 K. J Appl Phys. 1992;72:539–45.

    Article  CAS  Google Scholar 

  27. Omega Engineering. Physical Properties of Thermoelement Materials. https://www.omega.com/techref/pdf/z016.pdf. Accessed 1 Jan 2019.

  28. Data sheet Torayca T300B. http://www.toraycfa.com/pdfs/T300DataSheet.pdf. Accessed 1 Jan 2019.

  29. Data sheet Torayca T800H. https://www.toraycma.com/file_viewer.php?id=4463. Accessed 1 Jan 2019.

Download references

Acknowledgements

The authors would like to thanks J. Aubril for the discussions and quality of his technical realizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ketaki Mishra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, K., Garnier, B., Le Corre, S. et al. Accurate measurement of the longitudinal thermal conductivity and volumetric heat capacity of single carbon fibers with the 3ω method. J Therm Anal Calorim 139, 1037–1047 (2020). https://doi.org/10.1007/s10973-019-08568-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08568-z

Keywords

Navigation