Skip to main content

Effectiveness of various shapes of Al2O3 nanoparticles on the MHD convective heat transportation in porous medium

CVFEM modelling


The influences of Al2O3 nanoparticles with various shapes on thermal characteristics of nanofluid within a permeable space concerning magnetic force have been simulated by means of CVFEM. To form the final PDEs, radiation term has been incorporated. Impacts of magnetic force, radiation constraint, Rayleigh number and shape factor on nanomaterial behaviour have been analysed. Results demonstrate that the higher values of shape factor lead to augmented convective heat transfer. By augmenting the magnetic strength, conductive heat transfer can be predominant than that of the convection.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Rudraiah N, Barron RM, Venkatachalappa M, Subbaraya CK. Effect of a magnetic field on free convection in a rectangular enclosure. Int J Eng Sci. 1995;33:1075–84.

    Article  Google Scholar 

  2. 2.

    Kakarantzas SC, Sarris IE, Grecos AP, Vlachos NS. Magnetohydrodynamic natural convection in a vertical cylindrical cavity with sinusoidal upper wall temperature. Int J Heat Mass Transf. 2009;52:250–9.

    Article  Google Scholar 

  3. 3.

    Selimefendigil F, Öztop HF. Corrugated conductive partition effects on MHD free convection of CNT-water nanofluid in a cavity. Int J Heat Mass Transf. 2019;129:265–77.

    CAS  Article  Google Scholar 

  4. 4.

    Sheikholeslami M. CuO-water nanofluid flow due to magnetic field inside a porous media considering Brownian motion. J Mol Liq. 2018;249:921–9.

    CAS  Article  Google Scholar 

  5. 5.

    Cao L, Si X, Zheng L. Convection of Maxwell fluid over stretching porous surface with heat source/sink in presence of nanoparticles: Lie group analysis. Appl Math Mech. 2016;37:433–42.

    Article  Google Scholar 

  6. 6.

    Selimefendigil F, Oztop HF. Forced convection and thermal predictions of pulsating nanofluid flow over a backward facing step with a corrugated bottom wall. Int J Heat Mass Transf. 2017;110:231–47.

    CAS  Article  Google Scholar 

  7. 7.

    Sheikholeslami M, Jafaryar M, Hedayat M, Shafee A, Li Z, Nguyen TK, Bakouri M. Heat transfer and turbulent simulation of nanomaterial due to compound turbulator including irreversibility analysis. Int J Heat Mass Transf. 2019;137:1290–300.

    CAS  Article  Google Scholar 

  8. 8.

    Selimefendigil F, Öztop HF. Laminar convective nanofluid flow over a backward-facing step with an elastic bottom wall. J Thermal Sci Eng Appl. 2017;9(2):021016.

    Article  Google Scholar 

  9. 9.

    Selimefendigil F, Chamkha AJ. Magnetohydrodynamics mixed convection in a power law nanofluid-filled triangular cavity with an opening using Tiwari and Das’ nanofluid model. J Therm Anal Calorim. 2019;135(1):419–36.

    CAS  Article  Google Scholar 

  10. 10.

    Choi SUS. Enhancing thermal conductivity of fluids with nanoparticles. In: The Proceedings of the 1995 ASME international mechanical engineering congress and exposition, San Francisco. ASME, FED 231/MD, vol. 66; 1995. p. 99–105.

  11. 11.

    Sheremet MA, Oztop HF, Pop I. MHD natural convection in an inclined wavy cavity with corner heater filled with a nanofluid. J Magn Magn Mater. 2016;416:37–47.

    CAS  Article  Google Scholar 

  12. 12.

    Kefayati GHR. Simulation of heat transfer and entropy generation of MHD natural convection of non-Newtonian nanofluid in an enclosure. Int J Heat Mass Transf. 2016;92:1066–89.

    Article  Google Scholar 

  13. 13.

    Kefayati GHR. Simulation of double diffusive MHD (magnetohydrodynamic) natural convection and entropy generation in an open cavity filled with power-law fluids in the presence of Soret and Dufour effects (part I: study of fluid flow, heat and mass transfer). Energy. 2016;107:889–916.

    Article  Google Scholar 

  14. 14.

    Sheikholeslami M, Sheremet MA, Shafee A, Li Z. CVFEM approach for EHD flow of nanofluid through porous medium within a wavy chamber under the impacts of radiation and moving walls. J Therm Anal Calorim. 2019.

    Article  Google Scholar 

  15. 15.

    Sheikholeslami M, Arabkoohsar A, Khan I, Shafee A, Li Z. Impact of Lorentz forces on Fe3O4–water ferrofluid entropy and exergy treatment within a permeable semi annulus. J Clean Prod. 2019;221:885–98.

    CAS  Article  Google Scholar 

  16. 16.

    Sheikholeslami M, Keramati H, Shafee A, Li Z, Alawad OA, Tlili I. Nanofluid MHD forced convection heat transfer around the elliptic obstacle inside a permeable lid drive 3D enclosure considering lattice Boltzmann method. Phys A. 2019;523:87–104.

    CAS  Article  Google Scholar 

  17. 17.

    Sheikholeslami M, Rokni HB. Numerical modeling of nanofluid natural convection in a semi annulus in existence of Lorentz force. Comput Methods Appl Mech Eng. 2017;317:419–30.

    Article  Google Scholar 

  18. 18.

    Sheikholeslami M, Shafee A, Zareei A, Haq RU, Li Z. Heat transfer of magnetic nanoparticles through porous media including exergy analysis. J Mol Liq. 2019;279:719–32.

    CAS  Article  Google Scholar 

  19. 19.

    Selimefendigil F, Oztop HF. Fluid-solid interaction of elastic-step type corrugation effects on the mixed convection of nanofluid in a vented cavity with magnetic field. Int J Mech Sci. 2019;152:185–97.

    Article  Google Scholar 

  20. 20.

    Rashad AM, Rashidi MM, Lorenzini G, Ahmed SE, Aly AM. Magnetic field and internal heat generation effects on the free convection in a rectangular cavity filled with a porous medium saturated with Cu–water nanofluid. Int J Heat Mass Transf. 2017;104:878–89.

    CAS  Article  Google Scholar 

  21. 21.

    Sheikholeslami M, Jafaryar M, Shafee A, Li Z, Haq RU. Heat transfer of nanoparticles employing innovative turbulator considering entropy generation. Int J Heat Mass Transf. 2019;136:1233–40.

    CAS  Article  Google Scholar 

  22. 22.

    Farshad SA, Sheikholeslami M. Simulation of exergy loss of nanomaterial through a solar heat exchanger with insertion of multi-channel twisted tape. J Therm Anal Calorim. 2019.

    Article  Google Scholar 

  23. 23.

    Rashidi S, Javadi P, Esfahani JA. Second law of thermodynamics analysis for nanofluid turbulent flow inside a solar heater with the ribbed absorber plate. J Therm Anal Calorim. 2018.

    Article  Google Scholar 

  24. 24.

    Sheikholeslami M, Haq RU, Shafee A, Li Z, Elaraki YG, Tlili I. Heat transfer simulation of heat storage unit with nanoparticles and fins through a heat exchanger. Int J Heat Mass Transf. 2019;135:470–8.

    CAS  Article  Google Scholar 

  25. 25.

    Sheikholeslami M, Shehzad SA. Magnetohydrodynamic nanofluid convective flow in a porous enclosure by means of LBM. Int J Heat Mass Transf. 2017;113:796–805.

    CAS  Article  Google Scholar 

  26. 26.

    Sheikholeslami M, Mahian O. Enhancement of PCM solidification using inorganic nanoparticles and an external magnetic field with application in energy storage systems. J Clean Prod. 2019;215:963–77.

    CAS  Article  Google Scholar 

  27. 27.

    Sheikholeslami M, Jafaryar M, Shafee A, Li Z. Nanofluid heat transfer and entropy generation through a heat exchanger considering a new turbulator and CuO nanoparticles. J Therm Anal Calorim. 2019.

    Article  Google Scholar 

  28. 28.

    Sheikholeslami M, Mehryan SAM, Shafee A, Sheremet MA. Variable magnetic forces impact on Magnetizable hybrid nanofluid heat transfer through a circular cavity. J Mol Liq. 2019;277:388–96.

    CAS  Article  Google Scholar 

  29. 29.

    Bellos E, Tzivanidis C. Thermal efficiency enhancement of nanofluid-based parabolic trough collectors. J Therm Anal Calorim. 2018.

    Article  Google Scholar 

  30. 30.

    Sheikholeslami M. New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media. Comput Methods Appl Mech Eng. 2019;344:319–33.

    Article  Google Scholar 

  31. 31.

    Arul Kumar R, Ganesh Babu B, Mohanraj M. Thermodynamic performance of forced convection solar air heaters using pin-fin absorber plate packed with latent heat storage materials. J Therm Anal Calorim. 2016;126:1657–78.

    CAS  Article  Google Scholar 

  32. 32.

    Meibodi SS, Kianifar A, Mahian O, Wongwises S. Second law analysis of a nanofluid-based solar collector using experimental data. J Therm Anal Calorim. 2016;126:617–25.

    CAS  Article  Google Scholar 

  33. 33.

    Sheikholeslami M, Barzegar Gerdroodbary M, Moradi R, Shafee A, Li Z. Application of neural network for estimation of heat transfer treatment of Al2O3–H2O nanofluid through a channel. Comput Methods Appl Mech Eng. 2019;344:1–12.

    Article  Google Scholar 

  34. 34.

    Sheikholeslami M. Application of control volume based finite element method (CVFEM) for nanofluid flow and heat transfer. Amsterdam: Elsevier; 2019.

    Google Scholar 

  35. 35.

    Rokni HB, Moore JD, Gupta A, McHugh MA, Gavaises M. Entropy scaling based viscosity predictions for hydrocarbon mixtures and diesel fuels up to extreme conditions. Fuel. 2019;241:1203–13.

    CAS  Article  Google Scholar 

  36. 36.

    Rashidi S, Eskandarian M, Mahian O, Poncet S. Combination of nanofluid and inserts for heat transfer enhancement. J Therm Anal Calorim. 2018.

    Article  Google Scholar 

  37. 37.

    Jafaryar M, Sheikholeslami M, Li Z, Moradi R. Nanofluid turbulent flow in a pipe under the effect of twisted tape with alternate axis. J Therm Anal Calorim. 2018.

    Article  Google Scholar 

  38. 38.

    Sun F, Yao Y, Li X, Li G, Miao Y, Han S, Chen Z. Flow simulation of the mixture system of supercritical CO2 & superheated steam in toe-point injection horizontal wellbores. J Petrol Sci Eng. 2018;163:199–210.

    CAS  Article  Google Scholar 

  39. 39.

    Rokni HB, Gupta A, Moore JD, McHugh MA, Bamgbaded BA, Gavaises M. Purely predictive method for density, compressibility, and expansivity for hydrocarbon mixtures and diesel and jet fuels up to high temperatures and pressures. Fuel. 2019;236:1377–90.

    CAS  Article  Google Scholar 

  40. 40.

    Saravia CM. A formulation for modelling levitation based vibration energy harvesters undergoing finite motion. Mech Syst Signal Process. 2019;117:862–78.

    Article  Google Scholar 

  41. 41.

    Sheikholeslami M, Zeeshan A. Analysis of flow and heat transfer in water based nanofluid due to magnetic field in a porous enclosure with constant heat flux using CVFEM. Comput Methods Appl Mech Eng. 2017;320:68–81.

    Article  Google Scholar 

  42. 42.

    Yadav D, Wang J, Bhargava R, Lee J, Cho HH. Numerical investigation of the effect of magnetic field on the onset of nanofluid convection. Appl Therm Eng. 2016;103:1441–9.

    CAS  Article  Google Scholar 

  43. 43.

    Sheikholeslami M, Haq RU, Shafee A, Li Z. Heat transfer behavior of Nanoparticle enhanced PCM solidification through an enclosure with V shaped fins. Int J Heat Mass Transf. 2019;130:1322–42.

    CAS  Article  Google Scholar 

  44. 44.

    Stalin PMJ, Arjunan TV, Matheswaran MM, Sadanandam N. Experimental and theoretical investigation on the effects of lower concentration CeO2/water nanofluid in flat-plate solar collector. J Therm Anal Calorim. 2017.

    Article  Google Scholar 

  45. 45.

    Qi C, Wang G, Yan Y, Mei S, Luo T. Effect of rotating twisted tape on thermo-hydraulic performances of nanofluids in heat-exchanger systems. Energy Convers Manag. 2018;166:744–57.

    CAS  Article  Google Scholar 

  46. 46.

    Sheikholeslami M. Numerical approach for MHD Al2O3–water nanofluid transportation inside a permeable medium using innovative computer method. Comput Methods Appl Mech Eng. 2019;344:306–18.

    Article  Google Scholar 

  47. 47.

    Zheng S, Juntai S, Keliu W, Xiangfang L. Gas flow behavior through inorganic nanopores in shale considering confinement effect and moisture content. Ind Eng Chem Res. 2018;57:3430–40.

    Article  Google Scholar 

  48. 48.

    Sheikholeslami M, Shehzad SA, Li Z, Shafee A. Numerical modeling for alumina nanofluid magnetohydrodynamic convective heat transfer in a permeable medium using Darcy law. Int J Heat Mass Transf. 2018;127:614–22.

    CAS  Article  Google Scholar 

  49. 49.

    Alkanhal TA, Sheikholeslami M, Usman M, Haq RU, ShafeeA Al-Ahmadi AS, Tlili I. Thermal management of MHD nanofluid within the porous medium enclosed in a wavy shaped cavity with square obstacle in the presence of radiation heat source. Int J Heat Mass Transf. 2019;139:87–94.

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Sabir A. Shehzad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vo, D.D., Hedayat, M., Ambreen, T. et al. Effectiveness of various shapes of Al2O3 nanoparticles on the MHD convective heat transportation in porous medium. J Therm Anal Calorim 139, 1345–1353 (2020).

Download citation


  • MHD
  • Nanoparticle’s shape
  • Darcy law
  • Radiation
  • Nanofluid