Rouchon L, Favergeon L, Pijolat M. Analysis of the kinetic slowing down during carbonation of CaO by CO2. J Therm Anal Calorim. 2013;113:1145–55.
CAS
Article
Google Scholar
Decoupling of global emissions and economic growth confirmed. International Energy Agency (IEA). 16 March 2016 Paris.https://www.iea.org/newsroomandevents/pressreleases/2016/March/decoupling-of-global-emissions-and-economic-growth-confirmed.html. Accessed 21 April 2016.
Manovic V, Anthony EJ. CaO-based pellets supported by calcium aluminate cements for high-temperature CO2 capture. Environ Sci Technol. 2009;43:7117–22.
CAS
Article
Google Scholar
Phromprasit J, et al. Metals (Mg, Sr and Al) modified CaO based sorbent for CO2 sorption/desorption stability in fixed bed reactor for high temperature application. Chem Eng J. 2016;284:1213.
Article
Google Scholar
Fujita S, et al. Oxidative destruction of hydrocarbons on Ca12Al14-xSixO33 + 0.5x (0 <= x <= 4) with radical oxygen occluded in nanopores. Catal Lett. 2006;106:139–43.
CAS
Article
Google Scholar
Kim SW, Shimoyama T, Hosono H. Solvated electrons in high-temperature melts and glasses of the room-temperatures table electride[Ca24Al28O64](4+).4e−. Science. 2011;333:71–4.
CAS
Article
Google Scholar
Proto A, et al. A study on the catalytic hydrogenation of aldehydes using mayenite as active support for palladium. Catal Commun. 2015;68:41–5.
CAS
Article
Google Scholar
Chen GH. Mechanical activation of calcium aluminate formation from CaCO3–Al2O3 mixtures. J Alloy Compd. 2006;426:279–83.
Article
Google Scholar
Iftekha S, et al. Phase formation of CaAl2O4 from CaCO3–Al2O3 powder mixtures. J Eur Ceram Soc. 2008;28:747–56.
Article
Google Scholar
Martavaltzi CS, Lemonidou AA. Parametric study of the CaO–Ca12Al14O33 synthesis with respect to high CO2 sorption capacity and stability on multicycle operation. Ind Eng Chem Res. 2008;43:9537–43.
Article
Google Scholar
Zhang X, et al. Investigation on a novel CaO–Y2O3 sorbent for efficient CO2 mitigation. Chem Eng J. 2014;243:297–304.
CAS
Article
Google Scholar
Luo C, et al. Enhanced cyclic stability of CO2 adsorption capacity of CaO-based sorbents using La2O3 or Ca12Al14O33 as additives. Korean J Chem Eng. 2011;28:1042–6.
CAS
Article
Google Scholar
Koirala R, Reddy GK, Smirniotis PG. Single nozzle flame-made highly durable metal doped Ca-based sorbents for CO2 capture at high temperature. Energy Fuels. 2012;26(5):3103–9.
CAS
Article
Google Scholar
Kierzkowska AM, Poulikakos LV, Broda M, Müller CR. Synthesis of calcium-based, Al2O3-stabilized sorbents for CO2 capture using a co-precipitation technique. Int J Greenh Gas Control. 2013;15:48–54.
CAS
Article
Google Scholar
Radfarnia HR, Sayari A. A highly efficient CaO-based CO2 sorbent prepared by a citrate-assisted sol–gel technique. Chem Eng J. 2015;262:913–20.
CAS
Article
Google Scholar
Angeli SD, Martavaltzi CS, Lemonidou AA. Development of a novel-synthesized Ca-based CO2 sorbent for multicycle operation: parametric study of sorption. Fuel. 2014;127:62–9.
CAS
Article
Google Scholar
Jeong YJ, Balamurugan C, Lee DW. Enhanced CO2 gas-sensing performance of ZnO nanopowder by La loaded during simple hydrothermal method. Sens Actuators, B. 2016;229:288–96.
CAS
Article
Google Scholar
Baltakys K, Eisinas A, Dambrauskas T. The influence of aluminum additive on the α-C2S hydrate formation process. J Therm Anal Calorim. 2015;121:75–84.
CAS
Article
Google Scholar
Iljina A, et al. The stability of formed CaF2 and its influence on the thermal behavior of C-S–H in CaO–silica gel waste-H2O system. J Therm Anal Calorim. 2017;127:221–8.
CAS
Article
Google Scholar
Meller N, Kyritsis K, Hall C. The mineralogy of the CaO–Al2O3–SiO2–H2O (CASH) hydroceramic system from 200 to 350 & #xB0;C. Cem Concr Res. 2009;39:45–53.
CAS
Article
Google Scholar
Baltakys K, Siauciunas R. Gyrolite formation in CaO–SiO2·nH2O–γ–Al2O3–Na2O–H2O system under hydrothermal conditions. Pol J Chem. 2007;81:103–14.
CAS
Google Scholar
Chang YP, et al. Morphological and structural evolution of mesoporous calcium aluminate nanocomposites by microwave-assisted synthesis. Microporous Mesoporous Mater. 2014;183:134–42.
CAS
Article
Google Scholar
Li C, Hirabayashi D, Suzuki K. Synthesis of higher surface area mayenite by hydrothermal method. Mater Res Bull. 2011;46:1307–10.
CAS
Article
Google Scholar
Renaudin G, Francois M, Evrard O. Order and disorder in the lamellar hydrated tetracalcium monocarboaluminate compound. Cem Concr Res. 1999;29:63–9.
CAS
Article
Google Scholar
Gabrovšek R, Vuk T, Kaučič V. The preparation and thermal behavior of calcium monocarboaluminate. Acta Chim Slov. 2008;55:942–50.
Google Scholar
Francois M, Renaudin G, Evrard O. Cementitious compound with composition 3CaO.Al2O3.CaCO3.11H2O. Acta Cryst. 1998;54:1214–7.
Google Scholar
Rivasmercury JM, Pena P, Aza AH, Turrillas X. Dehydration of Ca3Al2(SiO4)y(OH)4(3−y) (0 < y < 0.176) studied by neutron thermodiffractometry. J Eur Ceram Soc. 2008;28(9):1737–48.
CAS
Article
Google Scholar
Eisinas A, Doneliene J, Baltakys K, Urbutis A. Hydrothermal synthesis of calcium aluminium hydrate-based adsorbent for the removal of CO2. J Therm Anal Calorim. 2018;131:537–44.
CAS
Article
Google Scholar
Baltakys K, Eisinas A, Doneliene J, Dambrauskas T, Sarapajevaite G. The impact of Al2O3 amount on the synthesis of CASH samples and their influence on the early stage hydration of calcium aluminate cement. Ceram Int. 2019;45:2881–6.
CAS
Article
Google Scholar