Skip to main content
Log in

Preparation and characterization of CuCr2O4/SiO2 and Cu2Cr2O4/SiO2 nanocomposites obtained from carboxylate complex combinations

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This study reports the preparation and characterization of CuCr2O4/SiO2 and Cu2Cr2O4/SiO2 nanocomposites. In order to obtain 50 mass% CuCr2O4/SiO2 and Cu2Cr2O4/SiO2 nanocomposites, we have used a method based on the thermal decomposition of the precursors Cu(II) and Cr(III) carboxylate type complexes inside the SiO2 matrix. The precursors were formed inside the gels during the redox reaction between Cu(II) and Cr(III) metal nitrates and 1,3-propanediol (1,3PD). As a result of the gels heating, the precursors decomposed at ~ 300 °C leading to the amorphous metal oxides CuO and Cr2O3+x. Cr2O3+x turned to crystalline α-Cr2O3 (crystalline) at 400 °C which subsequently interacted with CuO. Well crystallized Cu2Cr2O4 was obtained at 1000 °C as a result of the interaction between CuCr2O4 and residual CuO formed at 800 °C. In both samples the oxides were homogenously distributed within the amorphous silica matrix. The nanocomposite samples CuCr2O4/SiO2 and Cu2Cr2O4/SiO2 obtained at different annealing temperatures were characterized by thermal analysis, FT-IR spectrometry and powder x-ray diffraction. The results showed that the silica matrix plays a crucial role for the preparation of the desired chromite nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Camargo PHC, Satyanarayana KG, Wypych F. Nanocomposites: synthesis, structure, properties and new application opportunities. Mat Res. 2009;12(1):1–39.

    Article  CAS  Google Scholar 

  2. Kaddouri A, Mazzocchia C, Tempesti E, Nomen R, Sempere J. Sol–gel processing of copper–chromium catalysts for ester hydrogenation. J Therm Anal. 1998;53:533–45.

    Article  CAS  Google Scholar 

  3. Lee YK, Park S, Kwo YS. Formation of methylpyrazine on a copper–chromite catalyst. Tecnol Ciencia Ed (IMIQ). 1989;4(1):34–41.

    Google Scholar 

  4. Hainic F, Plesch G, Dolezel P, Oveckova J. Study of copper chromite catalyst, III. Structure and catalytic activity of copper chromite catalyst in reductive alkylation reaction. React Kinet Catal Lett. 1986;32(2):393–8.

    Article  Google Scholar 

  5. Kaddouri A, Dupont N, Gelin P, Delichere P. Methane combustion over copper chromite catalysts prepared by the sol–gel process. Catal Lett. 2011;141:1581–9.

    Article  CAS  Google Scholar 

  6. Geng Q, Zhao X, Gao X, Yang S, Liu G. Low-temperature combustion synthesis of CuCr2O4 spinel powder for spectrally selective paints. J Sol-Gel Sci Technol. 2012;61:281–8.

    Article  CAS  Google Scholar 

  7. Pishch IV, Radion EV, Sokolovskaya DM, Popovskaya NF. A pigment based on coprecipitated chromium(III) and copper(II) hydroxides. Glass Ceram. 1996;53:7–8.

    Google Scholar 

  8. Saadi S, Bouguelia A, Trari M. Photocatalytic hydrogen evolution over CuCrO2. Sol Energy. 2006;80:272–80.

    Article  CAS  Google Scholar 

  9. Zhou S, Fang X, Deng Z, Li D, Dong W, Tao R, Meng G, Wang T. Room temperature ozone sensing properties of p-type CuCrO2 nanocrystals. Sensor Actuat B. 2009;14:119–23.

    Article  Google Scholar 

  10. Ahmad T, Phul R, Alam P, Lone IH, Shahazad M, Ahmed J, Ahamad T, Alshehri SM. Dielectric, optical and enhanced photocatalytic properties of CuCrO2 nanoparticles. RSC Adv. 2017;7:27549–57.

    Article  CAS  Google Scholar 

  11. Ketir W, Bouguelia A, Trari M. NO3 removal with a new delafossite CuCrO2 photocatalyst. Desalination. 2009;244:144–52.

    Article  CAS  Google Scholar 

  12. Asemi M, Ghanaatshoar M. Conductivity improvement of CuCrO2 nanoparticles by Zn doping and their application in solid-state dye-sensitized solar cells. Ceram Int. 2016;42:6664–72.

    Article  CAS  Google Scholar 

  13. Jiang JZ, Goya GF, Rechenberg HR. Magnetic properties of nanostructured CuFe2O4. J Phys: Condens Matter. 1999;11:4063–78.

    CAS  Google Scholar 

  14. Prince E. Chrystal and magnetic structure of copper chromite. Acta Cryst. 1954;10:554–6.

    Article  Google Scholar 

  15. Frontzek M, Ehlers G, Podlesnyak A, Cao H, Matsuda M, Zaharko O, Aliouane N, Barilo S, Shiryaev SV. Magnetic structure of CuCrO2: a single crystal neutron diffraction study. J Phys Condens Matter. 2012;24(1):016004. https://doi.org/10.1088/0953-8984/24/1/016004.

    Article  CAS  PubMed  Google Scholar 

  16. Chen HY, Yang CC. Transparent p-type Zn-doped CuCrO2 films by sol–gel processing. Surf Coat Technol. 2013;231:277–80.

    Article  CAS  Google Scholar 

  17. Jlaiel F, Amami M, Boudjada N, Strobel P, Ben Salah A. Metal transition doping effect on the structural and physical properties of delafossite-type oxide CuCrO2. J Alloy Compd. 2011;509:7784–8.

    Article  CAS  Google Scholar 

  18. Marquardt MA, Ashmore NA, Cann DP. Crystal chemistry and electrical properties of the delafossite structure. Thin Solid Films. 2006;496:146–56.

    Article  CAS  Google Scholar 

  19. Jacob KT, Kale GM, Iyengar GNK. Oxygen potentials, Gibbs’ energies and phase relations in the Cu-Cr-O system. J Mater Sci. 1986;21:2753–8.

    Article  CAS  Google Scholar 

  20. Gharagozlou M. Study on the influence of annealing temperature and ferrite content on the structural and magnetic properties of x(NiFe2O4)/(100 − x)SiO2 nanocomposites. J Alloys Compd. 2010;495:217–23.

    Article  CAS  Google Scholar 

  21. Stefanescu O, Vlase G, Barbu M, Barvinschi P, Stefanescu M. Preparation of CuFe2O4 nanocomposite strating from Cu(II)-Fe(III) carboxylates embedded in hybrid silica gels. J Therm Anal Calorim. 2013;113:1245–53.

    Article  CAS  Google Scholar 

  22. Barbu M, Stefanescu M, Stoia M, Vlase G, Barvinschi P. New sunthesis method for M(II) cromites/silica nanocomposites by thermal decomposition of some precursors formed inside the silica gels. J Therm Anal Calorim. 2012;108:1059–66.

    Article  CAS  Google Scholar 

  23. Stefanescu O, Stefanescu M. New Fe(III) malonate type complex combination for development of magnetic nanosized γ-Fe2O3. J Organomet Chem. 2013;740:50–5.

    Article  CAS  Google Scholar 

  24. Brinker CJ, Scherer GW. Sol–gel science—the physics and chemistry of sol–gel processing. San Diego: Academic Press; 1990.

    Google Scholar 

  25. Pathak A, Pramanik P. Nano-particles of oxides through chemical methods. PINSA. 2001;67(1):47–70.

    CAS  Google Scholar 

  26. Stefanescu M. Consideration on the formation of the mixed oxides starting from substances with high reactivity. University of Timisoara, Romania: PhD Thesis; 1993.

  27. Stefanescu M, Barbu M, Vlase T, Barvinschi P, Barbu-Tudoran L, Stoia M. Novel low temperature synthesis method for nanocrystalline zinc and magnesium chromites. Thermochim Acta. 2011;526:130–6.

    Article  CAS  Google Scholar 

  28. Levy LW, Goreaud M. Thermolyse einiger Kupfer (II)-Chromate, Anwendung auf die Analyse einiger Katalysatoren. Bull Soc Chim Fr. 1973;830. https://doi.org/10.1002/chin.197324051.

    Article  Google Scholar 

  29. Ursu D, Miclau M. Thermal stability of nanocrystalline 3R-CuCrO2. J Nanopart Res. 2014;16:2160. https://doi.org/10.1007/s11051-013-2160-x.

    Article  CAS  Google Scholar 

  30. Lenza RFS, Vasconcelos WL. Preparation of silica by sol–gel method using formamide. Mater Res. 2001;4:189–94.

    Article  CAS  Google Scholar 

  31. Nakamoto K. Infrared spectra of inorganic and coordination compounds. New York: Wiley; 1970.

    Google Scholar 

  32. Stefanescu M, Stoia M, Stefanescu O. Nanocomposites with controlled properties obtained by the thermal treatment of some thetraethil-ortosilicate-diols-metal nitrates gels. In: Morris RE, editor. The sol–gel process. New York: Nova Science Publishers; 2011.

    Google Scholar 

  33. Berei E, Muntean C, Stefanescu O, Niculescu M, Stefanescu M. Preparation of CuCr2O4 nanopowders using two different chromium sources. J Therm Anal Calorim. 2018;131(1):137–44.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mircea Ştefănescu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ştefănescu, M., Muntean, C., Berei, E. et al. Preparation and characterization of CuCr2O4/SiO2 and Cu2Cr2O4/SiO2 nanocomposites obtained from carboxylate complex combinations. J Therm Anal Calorim 138, 1887–1894 (2019). https://doi.org/10.1007/s10973-019-08479-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08479-z

Keywords

Navigation