Skip to main content
Log in

Multi-objective optimization of solar collector using water-based nanofluids with different types of nanoparticles

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This study looks at the effects of different kinds of nanoparticles including AL2O3, SiO2, and CuO on the design of a solar flat plate collector in different volumetric concentrations. Water was used as the base fluid, and optimal SFPC parameters were obtained for each of the nanofluids. Both the efficiency and total annual cost were selected as objective functions, and the optimum Pareto fronts were compared with those of the base fluid. The results show a significant enhancement in both the efficiency and TAC for all the studied nanofluids compared with the pure water as the working fluid. The efficiency improved by 4.47%, 4.65%, and 5.22% in the cases of AL2O3, SiO2, and CuO compared with base fluid with a fixed TAC of 67 $ year−1. With a fixed efficiency of 0.564, TAC decreased by 25.45%, 25.87%, and 27.88%, respectively. The optimum design parameters show that lower heat transfer surface area and insulator thickness are needed for CuO compared with the other cases, followed by SiO2, AL2O3, and the base fluid. In the optimum conditions, a lower particle volumetric concentration is required for CuO, followed by Al2O3 and SiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

a:

Annual parameter (–)

A:

Surface area (m2)

C :

Cost ($)

c p :

Heat capacity (J kg−1 K−1)

\(C_{\text{op}}\) :

Operational cost ($ year−1)

C p :

Heat capacity (kJ kg−1 K−1)

D :

Diameter (m)

F :

Friction factor (–)

F R :

Heat removal factor (–)

h :

Convection heat transfer coefficient (W m−2 K−1)

i :

Interest rate (–), point index (–)

I :

Radiation (W m−2)

j :

Objective index (–)

K :

Conductivity (W m−1 K−1)

k el :

Electricity cost ($ kWh−1)

knp :

Unit price of nanoparticle ($ kg−1)

L :

Collector length (m)

\(\dot{m}\) :

Mass flow rate (kg s−1)

m np :

Nanoparticle mass (kg)

N :

Number of tubes (–)

n :

Number of points (–)

N h :

Operational hours (hour year−1)

N p :

Number of plate (–)

Nu :

Nusselt number (–)

Pr :

Prandtl number

\(\dot{Q}\) :

Heat rate (W)

Ra :

Rayleigh number (–)

R b :

Total ratio of radiation

Re :

Reynolds number (–)

S :

Absorbed radiation (W m−2)

U :

Collector loss coefficient (W m−2 K−1)

V :

Collector volume, velocity

W :

Space between tubes (m)

\(\dot{W}_{\text{p}}\) :

Pump power (kW)

y :

Lifetime (year)

β :

Collector angle (°)

δ :

Thickness (m)

\(\Delta P\) :

Pressure drop

ε :

Emission (–)

η :

Efficiency (–)

φ :

Assembly parameter (–)

μ :

Viscosity (Pa s)

insu :

Insulation volume (m3)

\(\rho_{\text{g}}\) :

Ambient reflectance (–)

σ :

Boltzmann constant

ϕ :

Volume concentration

a:

Ambient

b:

Bottom

b:

Belt

bf:

Base fluid

c:

Cover

col:

Collector

e:

Edge

eff:

Effective

i:

Inner

insu:

Insulation

inv:

Investment

nf:

Nanofluid

np:

Nanoparticle

o:

Outer

p:

Plate, pump

t:

Tube, top

HE:

Heat exchanger

NSGA:

Non-sorting genetic algorithm

PVC:

Particle volume concentration

SFPC:

Solar flat plate collector

STHE:

Shell-and-tube HE

TAC:

Total annual cost ($ y−1)

References

  1. Loni R, Kasaeian AB, Mahian O, Sahin AZ. Thermodynamic analysis of an organic rankine cycle using a tubular solar cavity receiver. Energy Convers Manag. 2016;127:494–503.

    Article  CAS  Google Scholar 

  2. Bellos Evangelos, Tzivanidis Christos, Papadopoulos Angelos. Enhancing the performance of a linear Fresnel reflector using nanofluids and internal finned absorber. J Therm Anal Calorim. 2019;135(1):237–55.

    Article  CAS  Google Scholar 

  3. Tiwari AK. Application of nanoparticles in solar collectors: a review. Mater Today Proc. 2015;2:3638–47.

    Article  Google Scholar 

  4. Kiliç F, Menlik T, Sözen A. Effect of titanium dioxide/water nanofluid use on thermal performance of the flat plate solar collector. Sol Energy. 2018;164:101–8.

    Article  Google Scholar 

  5. Hajabdollahi F, Premnath K. Numerical study of the effect of nanoparticles on thermoeconomic improvement of a solar flat plate collector. Appl Therm Eng. 2017;127:390–401.

    Article  CAS  Google Scholar 

  6. Hawwash AA, Rahman AKA, Nada SA, Ookawara S. Numerical investigation and experimental verification of performance enhancement of flat plate solar collector using nanofluids. Appl Therm Eng. 2018;130:363–74.

    Article  CAS  Google Scholar 

  7. Mirzaei M, Hosseini SMS, Kashkooli AMM. Assessment of Al2O3 nanoparticles for the optimal operation of the flat plate solar collector. Appl Therm Eng. 2018;134:68–77.

    Article  CAS  Google Scholar 

  8. Siavashi M, Ghasemi K, Yousofvand R, Derakhshan S. Computational analysis of SWCNH nanofluid-based direct absorption solar collector with a metal sheet. Sol Energy. 2018;170:252–62.

    Article  CAS  Google Scholar 

  9. Aberoumand S, Ghamari S, Shabani B. Energy and exergy analysis of a photovoltaic thermal (PV/T) system using nanofluids: an experimental study. Sol Energy. 2018;165:167–77.

    Article  CAS  Google Scholar 

  10. Hassan MM, Teamah MA, El-Maghlany WM. Numerical investigation for heat transfer enhancement using nanofluids over ribbed confined one-end closed flat-plate. Alex Eng J. 2017;56:333–43.

    Article  Google Scholar 

  11. Yurddas A, Çerç Y. Numerical analysis of heat transfer in a flat-plate solar collector with nanofluids. Heat Transf Res. 2017;48:8–16.

    Article  Google Scholar 

  12. Ahmadi F, Abedini-Saniji MH, Yaghoubi MA, Goshtasbirad E. Three-dimensional Numerical study of AL2O3-terminal VP-1 nanofluid on heat transfer enhancement from an absorber tube of a parabolic trough collector. In: ICHMT digital library online. 2014. http://www.dl.begellhouse.com/references/1bb331655c289a0a,63ad07a47887553a,7ceedac765d92363.html?year=2017.

  13. Jouybari HJ, Saedodin S, Zamzamian A, Nimvari ME, Wongwises S. Effects of porous material and nanoparticles on the thermal performance of a flat plate solar collector: an experimental study. Renew Energy. 2017;114:1407–18.

    Article  CAS  Google Scholar 

  14. Jouybari HJ, Nimvari ME, Saedodin S. Thermal performance evaluation of a nanofluid-based flat-plate solar collector. J Therm Anal Calorim. 2019;1–18.

  15. Hajabdollahi H, Hajabdollahi Z. Assessment of nanoparticles in thermoeconomic improvement of shell and tube heat exchanger. Appl Therm Eng. 2016;106:827–37.

    Article  CAS  Google Scholar 

  16. Hajabdollahi H, Hajabdollahi Z. Numerical study on impact behavior of nanoparticle shapes on the performance improvement of shell and tube heat exchanger. Chem Eng Res. 2017;125:449–60.

    Article  CAS  Google Scholar 

  17. Said Z, Saidur R, Rahim NA. Energy and exergy analysis of a flat plate solar collector using different sizes of aluminium oxide based nanofluid. J Clean Prod. 2016;133:518–30.

    Article  CAS  Google Scholar 

  18. Hajabdollahi H, Hajabdollahi Z. Investigating the effect of nanoparticle on thermo-economic optimization of fin and tube heat exchanger. Proc Inst Mech Eng Part E J Process Mech Eng. 2017;231:1127–40.

    Article  CAS  Google Scholar 

  19. Bellos Evangelos, Tzivanidis Christos. A review of concentrating solar thermal collectors with and without nanofluids. J Therm Anal Calorim. 2019;135(1):763–86.

    Article  CAS  Google Scholar 

  20. Sabiha MA, Saidur R, Hassani S, Said Z, Mekhilef S. Energy performance of an evacuated tube solar collector using single walled carbon nanotubes nanofluids. Energy Convers Manag. 2015;105:1377–88.

    Article  CAS  Google Scholar 

  21. Bellos Evangelos, Tzivanidis Christos. Thermal efficiency enhancement of nanofluid-based parabolic trough collectors. J Therm Anal Calorim. 2019;135(1):597–608.

    Article  CAS  Google Scholar 

  22. The MathWorks Inc. MATLAB and Statistics Toolbox Release 2014b. Natick: The MathWorks Inc; 2014.

    Google Scholar 

  23. Hay JE, Davies JA. Calculation of the solar radiation on an inclined surface. In: Proceedings of the first canadian solar radiation data workshop, 1980. p. 59.

  24. Duffy J, Beckman W. Solar engineering of thermal processes. New York: Wiley; 1991.

    Google Scholar 

  25. Sharma KV, Sarma PK, Azmi WH, Mamat R, Kadirgama K. Correlations to predict friction and forced convection heat transfer coefficients of water based nanofluids for turbulent flow in a tube. Int J Microsc Nanoscale Therm. 2012;3:1–25.

    CAS  Google Scholar 

  26. Vajjha Ravikanth S, Das Debendra K, Kulkarni Devdatta P. Development of new correlations for convective heat transfer and friction factor in turbulent regime for nanofluids. Int J Heat Mass Transf. 2010;53(21–22):4607–18.

    Article  CAS  Google Scholar 

  27. Mitchell JW. Heat transfer from spheres and other animal forms. Biophys J. 1976;16:561–9.

    Article  CAS  Google Scholar 

  28. Fabio S. Analysis of a flat-plate solar collector. MVK160 Heat and Mass Transport. 2008.

  29. Mitchell JW. Heat transfer from spheres and other animal forms. Biophys J. 1976;16:561–9.

    Article  CAS  Google Scholar 

  30. Hollands KGT, Unny TE, Raithby GD, Konicek L. Free convective heat transfer across inclined air layers. J Heat Transf. 1976;98:189–93.

    Article  CAS  Google Scholar 

  31. Hajabdollahi Zahra, Hajabdollahi Hassan. Thermo-economic modeling and multi-objective optimization of solar water heater using flat plate collectors. Sol Energy. 2017;155:191–202.

    Article  Google Scholar 

  32. Hajabdollahi F, Premnath K. Numerical study of the effect of nanoparticles on thermoeconomic improvement of a solar flat plate collector. Appl Therm Eng. 2017;127:390–401.

    Article  CAS  Google Scholar 

  33. Sanaye S, Hajabdollahi H. 4 E analysis and multi-objective optimization of CCHP using MOPSOA. Proc Inst Mech Eng Part E J Process Mech Eng. 2014;228:43–60.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the International Research and Development Program of the National Research Foundation of Korea (NRF), which is funded by the Ministry of Science and ICT of Korea (NRF-2017K1A3A1A30084513). Partial support was also obtained from the National Research Foundation of Korea (NRF) grant, which is funded by the Korean government (MSIT) (Nos. 2011-0030013 and 2018R1A2B2007117).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung Chun Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajabdollahi, Z., Hajabdollahi, H. & Kim, K.C. Multi-objective optimization of solar collector using water-based nanofluids with different types of nanoparticles. J Therm Anal Calorim 140, 991–1002 (2020). https://doi.org/10.1007/s10973-019-08444-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08444-w

Keywords

Navigation