Skip to main content
Log in

Thermogravimetric analysis of teeth for forensic purposes

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The objectives of this study were to characterize the thermal decomposition of human teeth and to evaluate the decomposition of organic matter, including DNA, at different temperatures. Eight teeth were chemically characterized by thermogravimetric analysis coupled with mass spectroscopy, conducting evolved gas analyses at temperatures up to 1000 °C and 60-min isothermal assays at 50, 100, 150, 200, 250, 300, 350, and 400 °C. Mass losses (total of 25.2%) were associated with: loss of free water at temperatures between 44 and 210 °C, combustion of organic matter between 211 and 603 °C, and decomposition of inorganic matter between 604 and 940 °C. The first organic fragment detected was sulfur dioxide (linked to protein decomposition), which showed a major peak at around 270 °C, while volatile DNA residues were recorded between 330 and 347 °C. Isothermal assay results showed that carbon dioxide molecules (associated with organic matrix decomposition) were already present between 150 and 200 °C, indicating the start of organic matter degradation and a potential negative effect on DNA integrity at this temperature range. The most severe decomposition of organic matter started between 200 and 250 °C. These data contribute to knowledge on the decomposition of organic matter, particularly DNA, under thermal conditions encountered in forensic scenarios requiring the genetic identification of fire-damaged humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3: Left
Fig. 4: Left
Fig. 5

Similar content being viewed by others

References

  1. Holland MM, Cave CA, Holland CA, Bille TW. Development of a quality, high throughput DNA analysis procedure for skeletal samples to assist with the identification of victims from the World Trade Center attacks. Croat Med J. 2003;44:264–72.

    PubMed  Google Scholar 

  2. Foran DR, Gehring ME, Stallworth SE. The recovery and analysis of mitochondrial DNA from exploded pipe bombs. J Forensic Sci. 2009;54:90–4.

    Article  CAS  Google Scholar 

  3. Ubelaker DH. The forensic evaluation of burned skeletal remains: a synthesis. Forensic Sci Int. 2009;183:1–5.

    Article  Google Scholar 

  4. Makhlouf F, Alvarez JC, de la Grandmaison GL. Suicidal and criminal immolations: an 18-year study and review of the literature. Leg Med. 2011;13:98–102.

    Article  CAS  Google Scholar 

  5. Margiotta G, Gabbrielli M, Carnevali E, Alberti T, Carlini L, Lancia M, et al. Genetic identification by using short tandem repeats analysis in a case of suicide by self-incineration. Am J Forensic Med Pathol. 2014;35:172–5.

    Article  Google Scholar 

  6. Fanton L, Jdeed K, Tilhet-Coartet S, Malicier D. Criminal burning. Forensic Sci Int. 2006;158:87–93.

    Article  CAS  Google Scholar 

  7. Butler JM. The future of forensic DNA analysis. Philos Trans R Soc Lond B Biol Sci. 2015. https://doi.org/10.1098/rstb.2014.0252.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mundorff AZ, Bartelink EJ, Mar-Cash E. DNA preservation in skeletal elements from the world trade center disaster: recommendations for Mass Fatality Management. J Forensic Sci. 2009;54:739–45.

    Article  CAS  Google Scholar 

  9. Schwark T, Heinrich A, Preuße-Prange A, Von Wurmb-Schwark N. Reliable genetic identification of burnt human remains. Forensic Sci Int Genet. 2011;5:393–9.

    Article  CAS  Google Scholar 

  10. Valenzuela A, Martin-de las Heras S, Marques T, Exposito N, Bohoyo JM. The application of dental methods of identification to human burn victims in a mass disaster. Int J Legal Med. 2000;113:236–9.

    Article  CAS  Google Scholar 

  11. Woodward SR, King MJ, Chiu NM, King MJ, Chiu NM, Kuchar MJ, et al. Amplification of ancient nuclear DNA from teeth and soft tissues. Tech Amplif Anc Nucl DNA Teeth Soft Tissues. 1994;3:244–7.

    CAS  Google Scholar 

  12. Ricaut FX, Keyser-Tracqui C, Crubézy E, Ludes B. STR-genotyping from human medieval tooth and bone samples. Forensic Sci Int. 2005;151:31–5.

    Article  CAS  Google Scholar 

  13. Peters F, Schwarz K, Epple M. The structure of bone studied with synchrotron X-ray diffraction, X-ray absorption spectroscopy and thermal analysis. Thermochim Acta. 2000;361:131–8.

    Article  CAS  Google Scholar 

  14. Onishi A, Thomas P, Stuart B. TG-MS characterisation of pig bone in an inert atmosphere. J Therm Anal Calorim. 2007;88:405–9.

    Article  CAS  Google Scholar 

  15. Teruel JDD, Alcolea A, Hernández A, Ruiz AJO. Comparison of chemical composition of enamel and dentine in human, bovine, porcine and ovine teeth. Arch Oral Biol. 2015;60:768–75.

    Article  CAS  Google Scholar 

  16. Vargas-Becerril N, Reyes-Gasga J, García-García R. Evaluation of crystalline indexes obtained through infrared spectroscopy and x-ray diffraction in thermally treated. Mater Sci Eng C Mater Biol Appl. 2019;97:644–9.

    Article  CAS  Google Scholar 

  17. Chowdhury ND, Ghosh KS. Calorimetric studies of Ag–Sn–Cu dental amalgam alloy powders and their amalgams. J Therm Anal Calorim. 2017;130:623–37.

    Article  Google Scholar 

  18. Buriti JS, Barreto MEV, Santos KO, Fook MVL. Thermal, morphological, spectroscopic and biological study of chitosan, hydroxyapatite and wollastonite biocomposites. J Therm Anal Calorim. 2018;134:1521–30.

    Article  CAS  Google Scholar 

  19. Lörinczy D. Thermal analysis in biological and medical applications. J Therm Anal Calorim. 2017;130:1263–80.

    Article  Google Scholar 

  20. Devièse T, Colombini MP, Regert M, Stuart BH, Guerbois JP. TGMS analysis of archaeological bone from burials of the late Roman period. J Therm Anal Calorim. 2010;99:811–3.

    Article  Google Scholar 

  21. Karni M, Zidon D, Polak P, Zalevsky Z, Shefi O. Thermal degradation of DNA. DNA Cell Biol. 2013;32:298–301.

    Article  CAS  Google Scholar 

  22. Alongi J, Di Blasio A, Milnes J, Malucelli G, Bourbigot S, Kandola B, et al. Thermal degradation of DNA, an all-in-one natural intumescent flame retardant. Polym Degrad Stab. 2014;113:1–9.

    Google Scholar 

  23. R Core Team. R: A language and environment for statistical computing [Internet]. R Found. Stat. Comput. Viena, Austria. 2013. Available from: https://www.r-project.org/. Accessed 15 May 2018.

  24. Manjunath BC, Chandrashekar BR, Mahesh M, Vatchala Rani RM. DNA profiling and forensic dentistry—A review of the recent concepts and trends. J Forensic Leg Med. 2011;18:191–7.

    Article  CAS  Google Scholar 

  25. Votyakov S, Kiseleva D, Shchapova Yu, Sadykova N. Thermal properties of fossilized mammal bone remnants of the Urals. J Therm Anal Calorim. 2010;101:63–70.

    Article  CAS  Google Scholar 

  26. Liao CJ, Lin FH, Chen KS, Sun JS. Thermal decomposition and reconstitution of hydroxyapatite in air atmosphere. Biomaterials. 1999;20:1807–13.

    Article  CAS  Google Scholar 

  27. Janković B. Thermal characterization and detailed kinetic analysis of Cassava starch thermo-oxidative degradation. Carbohydr Polym. 2013;95:621–9.

    Article  Google Scholar 

  28. Enax J, Prymak O, Raabe D, Epple M. Structure, composition, and mechanical properties of shark teeth. J Struct Biol. 2012;178:290–9.

    Article  CAS  Google Scholar 

  29. Fereira JL, De Fereira ÁE, Ortega AI. Methods for the analysis of hard dental tissues exposed to high temperatures. Forensic Sci Int. 2008;178:119–24.

    Article  Google Scholar 

  30. Muller M, Berytrand MF, Quatrehomme G, Bolla MRJ. Macroscopic and microscopic aspects of incinerated teeth. J Forensic Odontostomatol. 1998;16:1–7.

    CAS  PubMed  Google Scholar 

  31. Rubio L, Sioli JM, Suarez J, Gaitan MJ, Martin-de-las-Heras S. Spectrophotometric analysis of color changes in teeth incinerated at increasing temperatures. Forensic Sci Int. 2015;252:193.e1–6.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stella Martín-de-las-Heras.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study and protocols for recruitment were approved by the Human Research Ethics Committee of the University of Malaga (Approval number: CEUMA 2013-0048-H) in accordance with the “Ethical Principles for Medical Research Involving Human Subjects” adopted in the Declaration of Helsinki by the World Medical Association (64th WMA General Assembly, Fortaleza, Brazil, October 2013), Recommendation No. R (97) 5 of the Committee of Ministers to Member States on the Protection of Medical Data (1997), and Spanish Data Protection Act (Ley Orgánica 15/1999 de Protección de Datos, LOPD).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lozano-Peral, D., Arango-Díaz, A., Martín-de-las-Heras, S. et al. Thermogravimetric analysis of teeth for forensic purposes. J Therm Anal Calorim 139, 1121–1129 (2020). https://doi.org/10.1007/s10973-019-08441-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08441-z

Keywords

Navigation